Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

Shape memory alloys are characterised by interesting properties, i.e. shape memory effect and pseudoelasticity, which enable their increasing application. Thermomechanical aspects of martensitic and reverse transformations in TiNi shape memory alloy subjected to tension tests were investigated. The stress-strain characteristics obtained during the tests were completed by the temperature characteristics. The temperature changes were calculated on the basis of thermograms determined by an infrared camera. Taking advantages from the infrared technique, the temperature distributions on the specimen’s surface were found. Heterogeneous temperature distributions, related to the nucleation and development of the new martensite phase, were registered and analysed. A significant temperature increase, up to 30 K, was registered during the martensitic transformation. The similar effects of the heterogeneous temperature distribution were observed during unloading, while the reverse transformation, martensite into austenite took place, accompanied by significant temperature decrease.
Go to article

Abstract

Cu-Al-based high temperature shape memory alloys are preferred commonly due to their cheap costs and shape memory properties. In recent years, studies have been conducted on developing and producing a new type of Cu-Al based shape memory alloy. In this study, the CuAl-Cr alloy system, which has never been produced before, is investigated. After production, the SEMEDX measurements were made in order to determine the phases in the Cu84–xAl12Crx+4 (x = 0, 4, 6) (weight %) alloy system; and precipitate phases together with martensite phases were detected in the alloys. The confirmations of these phases were made via x-ray measurements. The same phases were observed by XRD diffractogram of the alloys as well. The values of transformation temperature of alloys were determined with Differential Scanning Calorimetry (DSC) at 20°C/min heating rate. According to the DSC results, the transformation temperature of the alloys varies between 320°C and 350°C. This reveals that the alloys show high temperature shape memory characteristics.
Go to article

Abstract

In this paper, the influence of Mo addition on the structure and mechanical properties of the NiCoMnIn alloys have been studied. Series of polycrystalline NiCoMnIn alloys containing from 0 to 5 mas.% of Mo were produced by the arc melting technique. For the alloys containing Mo, two-phase microstructure was observed. Mo-rich precipitates were distributed randomly in the matrix. The relative volume fraction of the precipitates depends on the Mo content. The numbers of the Mo rich precipitates increases with the Mo contents. The structures of the phases were determined by the TEM. The mechanical properties of the alloys are strongly affected by Mo addition contents. Brittleness of the alloys increases with the Mo contents.
Go to article

Abstract

In this work, vacuum hot pressed Ni-Mn-Sn-In Heusler alloys with different concentration of In (0, 2 and 4 at.%), were investigated. The magneto-structural behaviour and microstructure dependencies on chemical composition and on heat treatment were examined. It was found that the martensite start transformation temperature increases with growing In content and to a lesser extent with increasing temperature of heat treatment. The high energy X-ray synchrotron radiation results, demonstrated that both chemical composition as well as temperature of heat treatment slightly modified the crystal structures of the studied alloys. Microstructural investigation performed by transmission electron microscopy confirmed chemical composition and crystal structure changes in the alloys.
Go to article

This page uses 'cookies'. Learn more