Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 6
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Main aim of this study is to combine the characteristics of the sonic crystal (SC) with acoustic panels and porous materials to improve the sound transmission loss (STL) through the triple-panel structure. SCs cause a bandgap centered around a certain frequency (Bragg’s frequency) due to generation of destructive interference. Initially, an analytical method is developed that extends the previous theory of double-panel structure to predict STL through a triple-panel structure. Finite element (FE) simulations are performed to obtain the STL through the triple-panel, which are validated with the analytical predictions. Various configurations are analyzed using the FE method based on the method of inserting the porous material and SCs between the panels to address the combined effect. STL through the triple-panel structure is compared with that through the double-panel structure having the same total weight and total thickness. It is found that the combined structure of the triple panel and the SC with glass wool as filler gives the best soundproof performance for the same external dimensions. For narrow air gaps, filing with glass wool is more advantageous than inserting one row of SC. In addition, the triple panel combined with a SC has better soundproofing than the two-panel counterparts.
Przejdź do artykułu

Abstrakt

The increment in the number of automobiles and the densification of the city has increased noise pollution rates. In addition, the lack of regulation in Chile regarding the acoustic insulation of façades is a problem of a growing concern. The main objective of the present study was to obtain a model of the Sound Insulation of housing, façades, stratified in Santiago, Chile, based on constructive variables. It is expected to serve as a basis for one future regulation for acoustic façades of houses. In the present study, tests based on the international ISO 140-5 standard were carried out in situ. An estimation model of the Standardized Level Difference Dls,2m,nT,w + C, was obtained based on the opening/façade proportion, and the type of glass used for the windows.
Przejdź do artykułu

Abstrakt

The locally resonant sonic material (LRSM) is an artificial metamaterial that can block underwater sound. The low-frequency insulation performance of LRSM can be enhanced by coupling local resonance and Bragg scattering effects. However, such method is hard to be experimentally proven as the best optimizing method. Hence, this paper proposes a statistical optimization method, which first finds a group of optimal solutions of an object function by utilizing genetic algorithm multiple times, and then analyzes the distribution of the fitness and the Euclidean distance of the obtained solutions, in order to verify whether the result is the global optimum. By using this method, we obtain the global optimal solution of the low-frequency insulation of LRSM. By varying parameters of the optimum, it can be found that the optimized insulation performance of the LRSM is contributed by the coupling of local resonance with Bragg scattering effect, as well as a distinct impedance mismatch between the matrix of LRSM and the surrounding water. This indicates coupling different effects with impedance mismatches is the best method to enhance the low-frequency insulation performance of LRSM.
Przejdź do artykułu

Abstrakt

Additional sound sources are used as actuators in the vast majority of active noise reduction systems. One of the possible opportunities to extend the field of applications of active noise reduction systems is using active structures of variable sound insulation. The paper presents an analysis of ways of reducing noise with a structure of variable sound insulation consisting of a metal plate, active elements (Macro Fiber Composite), and a control system. The paper presents results of acoustic radiation simulations and measurements of sound intensity generated by the structure under the influence of stimulation by an acoustic wave. Simulations of mechanical vibrations and acoustic radiation for the plate were performed with the finite element method and ANSYS software. Simulation results made it possible to select locations for gluing the active elements and sensors. Analyses of the sound pressure level in the space to which the plate is radiating made it possible to determine dominant frequencies in the characteristics and, as a result, indicate vibration modes that can be reduced. Sound intensity measurements were performed with a three-way probe of USP mini Microflown. Results of simulations and measurements show that it is possible to achieve an improvement of the insulating power of a metal plate by approx. 10 dB.
Przejdź do artykułu

Abstrakt

Urethane foam mattresses are commonly used as cushioning when placing panel flooring on the floor slab of a building. Urethane foam consists of elastic fibres with pores. Both elements can affect the performance of the insulation against impact sounds. However, these effects have not yet been detailed, and they may change if the material properties or constitution of the fibres and pores in the cushioning change. In this paper, we propose an analytical model for use in evaluating the performance of insulation against floor impact sound. This model was used to examine the contribution of the pores versus the elastic fibres to wave transmissions from the flooring surface to the slab. The results reveal that the constitution of the foam (either open or closed cells of pores) and the thickness and hardness of the cushion layer strongly affect the sound insulation performance of the floor.
Przejdź do artykułu

Abstrakt

Airborne acoustic properties of composite structural insulated panels CSIPs composed of fibre-magnesium-cement facesheets and expanded polystyrene core were studied. The sound reduction ratings were measured experimentally in an acoustic test laboratory composed of two reverberation chambers. The numerical finite element (FEM) model of an acoustic laboratory available in ABAQUS was used and verified with experimental results. Steady-state and transient FE analyses were performed. The 2D and 3D modelling FE results were compared. Different panel core modifications were numerically tested in order to improve the airborne sound insulation of CSIPs.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji