Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Main aim of this study is to combine the characteristics of the sonic crystal (SC) with acoustic panels and porous materials to improve the sound transmission loss (STL) through the triple-panel structure. SCs cause a bandgap centered around a certain frequency (Bragg’s frequency) due to generation of destructive interference. Initially, an analytical method is developed that extends the previous theory of double-panel structure to predict STL through a triple-panel structure. Finite element (FE) simulations are performed to obtain the STL through the triple-panel, which are validated with the analytical predictions. Various configurations are analyzed using the FE method based on the method of inserting the porous material and SCs between the panels to address the combined effect. STL through the triple-panel structure is compared with that through the double-panel structure having the same total weight and total thickness. It is found that the combined structure of the triple panel and the SC with glass wool as filler gives the best soundproof performance for the same external dimensions. For narrow air gaps, filing with glass wool is more advantageous than inserting one row of SC. In addition, the triple panel combined with a SC has better soundproofing than the two-panel counterparts.
Go to article

Abstract

The paper presents an extensive review investigating the practical aspects related to the use of single- number ratings used in describing the sound insulation performance of partition wall panels and practical complications encountered in precise measurements in extensive frequency range from 50 Hz to 5 kHz. SWOT analysis of various single number ratings is described. A laboratory investigation on a double wall partition panel combination revealed the significant dependence of STC rating on transmission loss at 125 Hz attributed to 8 dB rule. An investigation conducted on devising alternative spectrums of aircraft noise, traffic noise, vehicular horn noise and elevated metro train noise as an extension to ISO 717-1 Ctr for ascertaining the sound insulation properties of materials exclusively towards these noise sources revealed that the single-number rating Rw + Ctr calculated using ISO 717-1 Ctr gives the minimum sound insulation, when compared with Rw + Cx calculated using the alternative spectrums of aircraft noise, traffic noise, etc., which means that material provides a higher sound insulation to the other noise sources. It is also observed that spectrum adaptation term Cx calculated using the spectrum of noise sources having high sound pressure levels in lower frequencies decreases as compared to ISO 717-1 Ctr owing to significant dependence of Ctr at lower frequencies.
Go to article

This page uses 'cookies'. Learn more