Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 78
items per page: 25 50 75
Sort by:

Abstract

The subject of the numerical investigation is an ellipsoidal head with a central (axis-symmetrical) nozzle. The nozzle is loaded by axial load force. The ellipsoidal head is under axial-symmetrical compression load. The numerical FEM model is elaborated. The calculation will provide the critical loads and equilibrium paths for the sample head.. The investigation will measure the influence of the diameter of the nozzle on the critical state of the ellipsoidal head.
Go to article

Abstract

In the Accession Treaty of 16 April 2003, Poland agreed to adopt euro as its national currency, but the date of this adoption was not specified. The financial crisis in several countries of the Eurozone, in response to the world financial crisis in 2008, reduced drastically the public support in Poland for the replacement of the zloty by the euro. This article has two objectives. One is to assess the net costs, economic and political, for Poland remaining long outside the Eurozone. In this assessment the analysis includes also two official reports by National Bank of Poland, the country’s central bank, published in 2009 and 2014. The other objective is to note and assess the reforms which have been undertaken by member states of the Eurozone in response to this crisis, in order to maintain and enhance financial stability and economic effectiveness of the rules adopted at the start of the Eurozone on 1 January 1999. The author suggests to consider and adopt additional reforms. Discussed is also the USA experience with its own monetary union, and the potential influence on policy developments in the EU of increasing global competitive pressures from China and India.
Go to article

Abstract

High voltage direct current (HVDC) emergency control can significantly improve the transient stability of an AC/DC interconnected power grid, and is an important measure to reduce the amount of generator and load shedding when the system fails. For the AC/DC interconnected power grid, according to the location of failure, disturbances can be classified into two categories: 1) interconnected system tie-line faults, which will cause the power unbalance at both ends of the AC system, as a result of the generator rotor acceleration at the sending-end grid and the generator rotor deceleration at the receiving-end grid; 2) AC system internal faults, due to the isolation effect of the DC system, only the rotor of the generator in the disturbed area changes, which has little impact on the other end of the grid. In view of the above two different locations of disturbance, auxiliary power and frequency combination control as well as a switch strategy, are proposed in this paper. A four-machine two-area transmission system and a multi-machine AC/DC parallel transmission system were built on the PSCAD platform. The simulation results verify the effectiveness of the proposed control strategy.
Go to article

Abstract

The basic element of a project organizing construction works is a schedule. The preparation of the data necessary to specify the timings of the construction completion as indicated in the schedule involves information that is uncertain and hard to quantify. The article presents the methods of building a schedule which includes a fuzzy amount of labour, time standards and number of workers. The proposed procedure allows determining the real deadline for project completion, taking into account variable factors affecting the duration of the individual works.
Go to article

Abstract

The paper present the concept of stability assessing the of solutions which are construction schedules. Rank have been obtained through the use of task scheduling rules and the application of the KASS software. The aim of the work is the choice of the equivalent solution in terms of the total time of the project. The selected solution optimization task should be characterized by the highest resistance to harmful environmental risk factors. To asses the stability of schedule simulation technique was used.
Go to article

Abstract

The need to modify conventional pavement rises due to high maintenance cost of the highway systems. With the continuously increased consumption, a large amount of waste glass materials is generated annually in the world. This paper aims to study the performance of pavement asphalt in which a fractional aggregate is replaced with crushed glass. In this paper, some important properties of asphalt mix, including stability, flow, specific gravity and air voids are investigated. The original sample is prepared without adding glass for different percentages of bitumen. Other samples are prepared by adding crushed glass to the mix with 5%, 10%, and 15% by aggregate weight. The results show that the properties of glass-asphalt mixture are improved in comparison with normal asphalt pavement. lt is concluded that the use of waste glass in asphalt pavement is desirable.
Go to article

Abstract

Having increasingly tightened geological and mining conditions in which the extraction of copper ore deposits in Poland is conducted, ensuring effective and safe mining is presently becoming a key task and a significant challenge for mine operators, mainly in the field of ground support systems being the equivalent for the new geological/mining conditions. As one may expect, these conditions shall be characterized by higher values of the primary stress tensor elements as well as the lower deformability and higher strength of the rock mass surrounding the copper ore body. T his means that in the near future, the rock bursts problem will become one of the most important issues deciding on the economy and safety within the newly developed mining areas. T herefore developing a novel effective ductile ground support systems which could be able to control the rock mass movement in squeezing and burst-prone rock conditions is recommended. T his type of requirement may fulfil only ductile or, in other words, the kinetic energy-absorbing systems, which permit slowing down a movement of violently ejected rock blocks. T his paper’s objective is to present the idea of the development of a new type of an effective and low cost ductile resin anchored rockbolt system with smooth and of the square cross-section steel rod is formed in coil shape of different pitch. T he developed bolt prototypes have been tested underground in the G-11 section of the Rudna mine. Results of the pull-out tests, involving different bolts’ shapes and different sliding materials set on the rockbolts’ rods, have proved those bolts’ efficiency as an element of the ductile support system.
Go to article

Abstract

This paper presents a complex study of anhydrite interbeds influence on the cavern stability in the Mechelinki salt deposit. The impact of interbeds on the cavern shape and the stress concentrations were also considered. The stability analysis was based on the 3D numerical modelling. Numerical simulations were performed with use of the Finite Difference Method (FDM) and the FLAC3D v. 6.00 software. The numerical model in a cuboidal shape and the following dimensions: length 1400, width 1400, height 1400 m, comprised the part of the Mechelinki salt deposit. Three (K-6, K-8, K-9) caverns were projected inside this model. The mesh of the numerical model contained about 15 million tetrahedral elements. The occurrence of anhydrite interbeds within the rock salt beds had contributed to the reduction in a diameter and irregular shape of the analysed caverns. The results of the 3D numerical modelling had indicated that the contact area between the rock salt beds and the anhydrite interbeds is likely to the occurrence of displacements. Irregularities in a shape of the analysed caverns are prone to the stress concentration. However, the stability of the analysed caverns are not expected to be affected in the assumed operation conditions and time period (9.5 years).
Go to article

Abstract

The positivity and absolute stability of a class of nonlinear continuous-time and discretetime systems are addressed. Necessary and sufficient conditions for the positivity of this class of nonlinear systems are established. Sufficient conditions for the absolute stability of this class of nonlinear systems are also given.
Go to article

Abstract

Caving in the excavation of mining galleries is a dangerous phenomenon, resulting in a threat to the health and life of humans, technological difficulties (transport, ventilation, etc.) and economic losses. Mining galleries list: design errors, runtime errors, errors and random causes among the causes of the caving occurring in recent periods in the excavation of underground coal mines. Examples in the recent period of caving in the excavation of mining galleries in coal mines indicated that one of the main causes of the situation was the loss of capacity and double timber technical wear caused by the corrosion of the profile. In practice, the caving that occur as a result of the technical wear can be divided into the breaking arc of a roof – bar, the loss of stability of one of the heading walls and a total heading collapse. On the basis of the carried out analysis of these cases, guidelines were proposed for improving the safe operation of the workings. The improvement of support stability may be achieved by applying additional supports, stabilizing the structure by bolting the support sets or by introducing a fiber-reinforced concrete coating with injection into the rock mass. Examples of caving occurring in the excavation, for which the preparatory selection of support does not match the geological-mining conditions, were also presented. The summary indicated the importance of diagnostics roadway in the safe and efficient conduct of mining that should be covered by the operational rules, and their scope and frequency should be adapted to the rank of the occurrence of hazard and support construction.
Go to article

Abstract

A new concept (notion) of the practical stability of positive fractional discrete-time linear systems is introduced. Necessary and sufficient conditions for the practical stability of the positive fractional systems are established. It is shown that the positive fractional systems are practically unstable if corresponding standard positive fractional systems are asymptotically unstable.
Go to article

Abstract

The main focus of the paper is on the asymptotic behaviour of linear discrete-time positive systems. Emphasis is on highlighting the relationship between asymptotic stability and the structure of the system, and to expose the relationship between null-controllability and asymptotic stability. Results are presented for both time-invariant and time-variant systems.
Go to article

Abstract

This article describes stability issues of main excavations in deep copper mines in Poland, from the perspective of mining work safety. To protect main transportation and ventilation routes, parts of rock are left untaken to form so-called protective pillars. The problem was to determine the size of main excavations protective pillars in deep underground copper mines in which provide stability of main excavations. The results of numerical simulations of the stability of protective pillars under specific geological and mining conditions are presented, covering: underground depth and width of protective pillar, number, size and layout geometry of protected excavations, as well as the impact of parameters of surrounding gob areas. Problem was solved applying numerical simulations based on the finite element method which were performed in a plane state of strain by means of Phase2 v. 8.0 software. The behavior of the rock mass under load was described by an elastic-plastic model. The Mohr-Coulomb criterion was used to assess the stability of the rock mass. The results of numerical modeling have practical applications in the designing of protective pillars primarily in determining their width. These results were used to prepare new guidelines for protective pillars in Polish copper mines in the Legnica-Glogow Copper District.
Go to article

Abstract

The study deals with stability and dynamic problems in bar structures using a probabilistic approach. Structural design parameters are defined as deterministic values and also as random variables, which are not correlated. The criterion of structural failure is expressed by the condition of non-exceeding the admissible load multiplier and condition of non-exceeding the admissible vertical displacement. The Hasofer-Lind index was used as a reliability measure. The primary research tool is the FORM method. In order to verify the correctness of the calculations Monte Carlo and Importance Sampling methods were used. The sensitivity of the reliability index to the random variables was defined. The limit state function is not an explicit function of random variables. This dependence was determined using a numerical procedure, e.g. the finite element methods. The paper aims to present the communication between the STAND reliability analysis program and the KRATA and MES3D external FE programs.
Go to article

Abstract

This paper presents non-linear mathematical model of a computer network with a part of wireless network. The article contains an analysis of the stability of the network based on TCP-DCR, which is a modification of the traditional TCP. Block diagram of the network model was converted to a form in order to investigate the D-stability using the method of the space of uncertain parameters. Robust D-stability is calculated for constant delays values.
Go to article

Abstract

In deformation analyses, it is important to find a stable reference frame and therefore the stability of the possible reference points must be controlled. There are several methods to test such stability. The paper’s objective is to examine one of such methods, namely the method based on application of R-estimation, for its sensitivity to gross errors. The method in question applies three robust estimators, however, it is not robust itself. The robustness of the method depends on the number of unstable points (the fewer unstable points there are, the more robust is the proposed method). Such property makes it important to know how the estimates applied and the strategy itself respond to a gross error. The empirical influence functions (EIF) can provide necessary information and help to understand the response of the strategy for a gross error. The paper presents examples of EIFs of the estimates, their application in the strategy and describes how important and useful is such knowledge in practice.
Go to article

Abstract

This paper describes a design process of HALE PW-114 sensor-craft, developed for high altitude (20 km) long endurance (40 h) surveillance missions. Designed as a blended wing (BW) configuration, to be made of metal and composite materials. Wing control surfaces provide longitudinal balance. Fin in the rear fuselage section together with wingtips provide directional stability. Airplane is equipped with retractable landing gear with controlled front leg that allows operations from conventional airfields. According to the initial requirements it is twin engine configuration, typical payload consists of electro-optical/infra-red FLIR, big SAR (synthetic aperture radar) and SATCOM antenna required for the longest range. Tailless architecture was based on both Horten and Northrop design experience. Global Hawk was considered as a reference point – it was assumed that BW design has to possess efficiency, relative payload and other characteristics at least the same or even better than that of Global Hawk. FLIR, SAR and SATCOM containers were optimised for best visibility. All payload systems are put into separate modular containers of easy access and quickly to exchange, so this architecture can be consider as a „modular”. An optimisation process started immediately when the so-called “zero configuration”, called PW-111 was ready. It was designed in the canard configuration. A canard was abandoned in HALE PW-113. Instead, new, larger outer wing was designed with smaller taper ratio. New configuration analysis revealed satisfactory longitudinal stability. Calculations suggested better lateral qualities for negative dihedral. These modifications, leading to aerodynamic improvement, gave HALE PW-114 as a result. The design process was an interdisciplinary approach, and included a selection of thick laminar wing section, aerodynamic optimisation of swept wing, stability analysis, weight balance, structural and flutter analysis, many on-board redundant systems, reliability and maintability analysis, safety improvement, cost and performance optimisation. Presented paper focuses mainly on aerodynamics, wing design, longitudinal control and safety issues. This activity is supported by European Union within V FR, in the area Aeronautics and Space.
Go to article

Abstract

The In this paper stabilisation problem of LC ladder network is established. We studied the following cases: stabilisation by inner resistance, by velocity feedback and stabilisation by dynamic linear feedback, in particularly stabilisation by first range dynamic feedback. The global asymptotic stability of the respectively system is proved by LaSalle’s theorem. In the proof the observability of the dynamic system plays an essential role. Numerical calculations were made using the Matlab/Simulink program.
Go to article

Abstract

The analysis of the positivity and stability of linear electrical circuits by the use of state-feedbacks is addressed. Generalized Frobenius matrices are proposed and their properties are investigated. It is shown that if the state matrix of an electrical circuit has generalized Frobenius form then the closed-loop system matrix is not positive and asymptotically stable. Different cases of modification of the positivity and stability of linear electrical circuits by state-feedbacks are discussed and necessary conditions for the existence of solutions to the problem are established.
Go to article

Abstract

Extracellular laccase produced by the wood-rotting fungus Cerrena unicolor was immobilised covalently on the mesostructured siliceous foam (MCF) and three hexagonally ordered mesoporous silicas (SBA-15) with different pore sizes. The enzyme was attached covalently via glutaraldehyde (GLA) or by simple adsorption and additionally crosslinked with GLA. The experiments indicated that laccase bound by covalent attachment remains very active and stable. The best biocatalysts were MCF and SBA-15 with Si-F moieties on their surface. Thermal inactivation of immobilised and native laccase at 80°C showed a biphasic-type activity decay, that could be modelled with 3- parameter isoenzyme model. It appeared that immobilisation did not significantly change the mechanism of activity loss but stabilised a fraction of a stable isoform. Examination of time needed for 90% initial activity loss revealed that immobilisation prolonged that time from 8 min (native enzyme) up to 155 min (SBA-15SF).
Go to article

Abstract

The paper presents the solutions, calculation results and dynamic observations of three-layers, annular plate with thick core subjected to increasing in time load. The presented solutions use approximate methods: orthogonalization method and finite difference method in analytical and numerical solution of the problem, and finite element method. The observed phenomenon of the reduction of critical load values of the plates, in which the buckling mode is not global and there are different additional deflections of respective plate layers was comprehensively analysed in order to evaluate the critical state and supercritical plate behaviour. The critical deformation could have a form with strong deformation in the region of the loaded plate edge. The observation of the dynamic behaviour of plates, which buckling modes have circumferential waves is an important element of the analysis. Presented in this work the analytical and numerical solution to the problem of dynamic plate deflection was generalized on the case of plates with buckling waves in circumferential direction.
Go to article

Abstract

The global (absolute) stability of nonlinear systems with negative feedbacks and positive descriptor linear parts is addressed. Transfer matrices of positive descriptor linear systems are analyzed. The characteristics u = f(e) of the nonlinear parts satisfy the condition k₁e  ≤ f(e) ≤ k₂e for some positive k₁, k₂. It is shown that the nonlinear feedback systems are globally asymptotically stable if the Nyquist plots of the positive descriptor linear parts are located in the right-hand side of the circles (–¹/k₁,  –¹/k₂).
Go to article

Abstract

The practical and asymptotic stabilities of delayed fractional discrete-time linear systems described by the model without a time shift in the difference are addressed. The D-decomposition approach is used for stability analysis. New necessary and sufficient stability conditions are established. The conditions in terms of the location of eigenvalues of the system matrix in the complex plane are given.
Go to article

Abstract

The paper deals with linear circuits synthesis with periodic parameters. It was proved that the time-varying voltages and currents of inner branches of such circuits can be calculated using linear recursive equations with periodic coefficients if signals on port are given. The stability theorem of periodic solution was formulated. Hereby described the synthesis problems appear when compensation of power supply systems is considered.
Go to article

This page uses 'cookies'. Learn more