Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The stability of positive linear continuous-time and discrete-time systems is analyzed by the use of the decomposition of the state matrices into symmetrical and antisymmetrical parts. It is shown that: 1) The state Metzler matrix of positive continuous-time linear system is Hurwitz if and only if its symmetrical part is Hurwitz; 2) The state matrix of positive linear discrete-time system is Schur if and only if its symmetrical part is Hurwitz. These results are extended to inverse matrices of the state matrices of the positive linear systems.
Go to article

Abstract

The paper addresses the problem of constrained pole placement in discrete-time linear systems. The design conditions are outlined in terms of linear matrix inequalities for the Dstable ellipse region in the complex Z plain. In addition, it is demonstrated that the D-stable circle region formulation is the special case of by this way formulated and solved pole placement problem. The proposed principle is enhanced for discrete-lime linear systems with polytopic uncertainties.
Go to article

This page uses 'cookies'. Learn more