Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 12
items per page: 25 50 75
Sort by:

Abstract

Cold-formed structure connections utilizing gusset plates are usually semi-rigid. This paper investigates the behaviours of rectangular gusset plates in cold-formed connections of elements whose columns and beams are made with lipped back-to-back C-sections. Methods of calculating strength and stiffness are necessary for such semi-rigid joints. The main task of this paper is to determine a method capable of calculating these characteristics. The proposed analytical method could then be easily adapted to the component method that is described in part 1993-1-8 of the Eurocode. This method allows us to calculate both the strength and stiffness of rectangular gusset plates, assuming that the joint deforms only in plane. This method of design moment resistance calculation was presented taking into account that an entire cross-section shall reach its yield stress. A technique of stiffness calculation was presented investigating the sum of deformations acquired at the bending moment and from shear forces which are transmitted from each beam bolt group. Calculation results according to the suggested method show good agreement of laboratory experimental results of specimens with numerical simulations. Two specimens of beam-to-column connections were tested in the laboratory. Lateral supports were used on the specimens to prevent lateral displacements in order to better investigate the behaviour of the rectangular gusset plate in plane. Experiments were simulated by modelling rectangular gusset plates using standard finite element software ANSYS Workbench 14.0. Three-dimensional solid elements were used for modelling and both geometric and material nonlinear analysis was performed.
Go to article

Abstract

A numerical analysis of the initially clamped bolt joint subject to the working pressure is presented in the paper. Special, hexahedral 21- and 28-node isoparametric finite elements have been employed to model the contact zone. In this model, one takes into account loading due to the working pressure in the gap between the gasket and the flange arising as an effect of the progressing joint opening, what has not been considered in recent papers. Nonlinear stiffness characteristics of the bolt and the flange with the gasket are developed. Working pressure corresponding to the critical bolt force resulting in the joint leakage (complete opening between the gasket and the flange) is determined. FE computational results are compared with the available experimental results. The numerical results are presented using the authors' own graphical postprocessor.
Go to article

Abstract

This study investigates several factors that have not been specified in the standard for dynamic stiffness, compressibility, and long-term deformation; these factors can be used to evaluate the acoustic and physical performances of resilient materials. The study is intended to provide basic data for deriving the factors that need to be additionally reviewed through the standards. Since magnitude of dynamic stiffness changes with an increase in loading time, it is necessary to examine the setting of the loading time for a load plate under test conditions. Samples of size 300×300 mm, rather than 200×200 mm, yielded more reliable results for compressibility measurement. Since the test to infer long-term deformation of resilient materials after a period of 10 years in some samples showed variation characteristics different from those specified in the standards, it is recommended that the test method should be reviewed through ongoing research.
Go to article

Abstract

By the use of different distribution methods of dynamical characteristics in the form of slowness function, mechatronic discrete systems have been synthesized. Each model consists of mechanical discrete part and a piezostack actuator connected to LxRxCx external network that has to comply with dynamical requirements in the form of poles and zeros. External network can work within different configurations. In this paper, one investigates the influence of negative parameters of stiffness in mechanical replacement models and capacitance in final mechatronic structures, after dimensionless transformations and retransformations.
Go to article

Abstract

The paper focuses on a nonlinear model to represent the mechanical behaviour of a mix coil spring – rubber used in the secondary suspension of passenger rail vehicles. The principle of the model relies on overlapping of the forces corresponding to three components – the elastic component, the viscous component and the dry friction component. The model has two sources on non-linearity, in the elastic force and the friction force, respectively. The main attributes of the model are made visible by its response to an imposed displacement-type harmonic excitation. The results thus obtained from the applications of numerical simulation show a series of basic properties of the model, namely the dependence on amplitude and the excitation frequency of the model response, as well as of its stiffness and damping.
Go to article

Abstract

The paper describes an experimental behaviour of the basalt fibre reinforced polymer composite by external strengthening to the concrete beams. The BFRP composite is wrapped at the bottom face of R.C beam as one layer, two layers, three layers and four layers. The different characteristics – are studied in – first crack load, ultimate load, tensile and compressive strain, cracks propagation, crack spacing and number of cracks etc. To – investigate, total of five beams size 100×160×1700 mm were cast. One beam is taken as control and others are strengthened with BFRP composite with layers. From this investigation, the first crack load is increased depending on the increment in layers from 6.79% to 47.98%. Similarly, the ultimate load carrying – capacity is increased from 5.66% to 20%. The crack’s spacing is also reduced with an increase in the number of layers.
Go to article

Abstract

In this paper the basic methodology of the coupled response-degradation modelling of stochastic dynamical systems is presented along with the effective analysis of selected problems. First, the general formulation of the problems of stochastic dynamics coupled with the evolution of deterioration process is given. Then some specific degrading oscillatory systems under random excitation are analyzed with a special attention on the systems with fatigue-induced stiffness degradation. Both, the general discussion and the analysis of selected exemplary problems indicate how the reliability of deteriorating stochastic dynamical systems can be assessed.
Go to article

Abstract

The paper presents the results of an extensive investigation of asphalt concrete specimens with geosynthetic interlayer. The subject of this research is evaluation of influence of geosynthetics interlayer applied to bituminous pavements on interlayer bonding of specimens. The results of the tests proves that when geosynthetic is used, the bonding of interlayer depends mainly on the type of bituminous mixture, the type of geosynthetic, and the type and amount of bitumen used for saturation and sticking of geosynthetic. The amount of bitumen used in order to saturate and fix the geosynthetic significantly changes the interlayer bonding of specimens.
Go to article

Abstract

The paper presents optimization of 5-rod (5-link) suspension mechanism used in passenger cars for independent guiding of the wheels. Selected stiffness coefficients defined for five elastomeric bushings installed in joints of the suspension rods are considered as design variables. Two models with lumped parameters (i.e. elastokinematic and dynamic) of wheel-suspension-car body system are formulated to describe relationships between the design variables and the performance indexes including car active safety and ride comfort, respectively. The multi-criteria goal function is minimized using a deterministic algorithm. The suspension with optimized bushings rates fulfils desired elastokinematic criteria together with a defined dynamic criterion, describing the so-called rolling comfort. An event of car passing over short road bump is considered as dynamic conditions. The numerical example deals with an actual middle-class passenger car with 5-rod suspension at the front driven axle. Estimation of the models parameters and their verification were carried out on the basis of indoor and outdoor experiments. The proposed optimization procedure can be used to improve the suspension design or development cycle.
Go to article

Abstract

The paper presents the results of the study of the effect of a Fischer-Tropsch (F-T) synthetic wax on the resistance to permanent deformation of the AC 11S asphalt concrete. The synthetic wax was dosed at 1.5%, 2.5% and 3.5% by weight of bitumen 35/50. The compaction temperatures were 115ºC, 130ºC and 145ºC. The criteria adopted for measuring the resistance to permanent deformation included the following parameters: stiffness modulus at 2, 10 and 20ºC, permanent deformation (RTS), fatigue life determined using the indirect tensile fatigue test (ITFT) and resistance to rutting (WTSAIR, PRDAIR). The test results confirmed the positive infl uence of F-T synthetic wax on enhancing the permanent deformation resistance of asphalt concrete placed at lower compaction temperatures compared to that of standard asphalt concrete compacted at 140ºC.
Go to article

Abstract

Concrete is the most widely used construction material because of its specialty of being cast into any desired shape. The main requirements of earthquake resistant structures are good ductility and energy absorption capacity. Fiber reinforced concrete possesses high flexural and tensile strength, improved ductility, and high energy absorption over the conventional concrete in sustaining dynamic loads. The aim of this paper is to compare the properties of concrete beams in which three types of fibers are added individually. Steel fibers, polypropylene fibers and hybrid fibers were added to concrete in the weight ratio of four percentages in the preparation of four beam specimens. The fourth specimen did not contain fibers and acted as a control specimen. The dimensions of the beam specimens were 150 × 150 × 700 mm. The reinforced concrete beams of M30 grade concrete were prepared for casting and testing. Various parameters such as load carrying capacity, stiffness degradation, ductility characteristics and energy absorption capacity of FRC beams were compared with that of RC beams. The companion specimens were cast and tested to study strength properties and then the results were compared. All the beams were tested under three point bending under Universal Testing Machine (UTM). The results were evaluated with respect to modulus of elasticity, first crack load, ultimate load, and ultimate deflection. The test result shows that use of hybrid fiber improves the flexural performance of the reinforced concrete beams. The flexural behavior and stiffness of the tested beams were calculated, and compared with respect to their load carrying capacities. Comparison was also made with theoretical calculations in order to determine the load-deflection curves of the tested beams. Results of the experimental programme were compared with theoretical predictions. Based on the results of the experimental programme, it can be concluded that the addition of steel, polypropylene and hybrid fibers by 4% by weight of cement (but 2.14% by volume of cement) had the best effect on the stiffness and energy absorption capacity of the beams.
Go to article

Abstract

The aim of this paper is to compare some geometric parameters and deflections of a sandwich meta-structure with its classic, three-layer counterpart. Both structures are composed of the same materials and have the same external dimensions and mass, but their middle layers (cores) are different. The core of the sandwich meta-structure is a new spatial structure itself, consisting of there-layer bars. The core of the classic sandwich structure is a layer of the continuum. To make the comparison more general and convincing, three geometrical parameters, i.e., ratio of interfacial contact (Ric), interlayer bonding factor (Ibf) and coefficient of impact sensitivity (Cis), were introduced and applied. Deflections of the structures, simply supported at the edges and loaded in the mid-span by a static force, have been measured and are presented in the paper. Potential advantages of the new meta-structure are briefly outlined.
Go to article

This page uses 'cookies'. Learn more