Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

In the present work, amine based extractant and its mixture with cationic and solvating extractants were tested for the extraction of HCl from chloride solution containing Al(III). The chloride feed solution resulted from the leaching of spent HDS (hydro-desulfurization) catalysts. For this purpose, amine extractants, such as TOA (trioctyl amine), Alamine 336 (a mixture of tri-octyl/decyl amine), Alamine 308 (tri-isooctyl amine), and TEHA (tri 2-ethylhexyl amine) were used and the extraction and stripping behavior of HCl was compared. The extracted HCl was easily stripped from loaded TEHA phase, when compared with the other tested tertiary amine system. Solvent extraction reaction of HCl by TEHA was determined from the extraction data. Unlike TOA and Alamine 336, adding cationic extractant to TEHA had negligible effect on the extraction and stripping of HCl. In our experimental ranges, no Al was extracted by amines and pure HCl was recovered. MaCabe- Thiele diagrams for the extraction and stripping of HCl by TEHA were constructed.
Go to article

Abstract

An ecoefficient, economical and sustainable valorization process for the synthesis of Co3O4 from waste lithium-ion battery (LIB) by leaching-solvent extract-scrubbing-precipitation stripping route has been developed. Through an optimization, the waste LIB cathode was leached using 2000 mole/m3 of H2SO4 and 5 Vol. % of the H2O2 at a pulp density of 100 kg/m3 under leaching time 60 minutes and temperature 75 °C. From the separated leach liquor, cobalt was purified by saponified Cyanex 272. From cobalt, loaded Cyanex 272 impurities were scrubbed and the CoC2O4·2H2O was recovered through precipitation stripping. Finally, the precipitate was calcined to synthesize Co3O4, which is a precursor for LIB cathode materials manufacturing. From TGA-DTA, followed by XRD analysis it was confirmed that at 200 °C the CoC2O4·2H2O can be converted to anhydrous CoC2O4 and at 350 °C the anhydrous can be converted to Co3O4 and at 1100 °C the Co3O4 can be converted to CoO. Through reported route waste LIB can back to LIB manufacturing process through a versatile and flexible industrial approach.
Go to article

This page uses 'cookies'. Learn more