Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

Accurate network fault diagnosis in smart substations is key to strengthening grid security. To solve fault classification problems and enhance classification accuracy, we propose a hybrid optimization algorithm consisting of three parts: anti-noise processing (ANP), an improved separation interval method (ISIM), and a genetic algorithm-particle swarm optimization (GA-PSO) method. ANP cleans out the outliers and noise in the dataset. ISIM uses a support vector machine (SVM) architecture to optimize SVM kernel parameters. Finally, we propose the GA-PSO algorithm, which combines the advantages of both genetic and particle swarm optimization algorithms to optimize the penalty parameter. The experimental results show that our proposed hybrid optimization algorithm enhances the classification accuracy of smart substation network faults and shows stronger performance compared with existing methods.
Go to article

Abstract

Affective computing studies and develops systems capable of detecting humans affects. The search for universal well-performing features for speech-based emotion recognition is ongoing. In this paper, a small set of features with support vector machines as the classifier is evaluated on Surrey Audio-Visual Expressed Emotion database, Berlin Database of Emotional Speech, Polish Emotional Speech database and Serbian emotional speech database. It is shown that a set of 87 features can offer results on-par with state-of-the-art, yielding 80.21, 88.6, 75.42 and 93.41% average emotion recognition rate, respectively. In addition, an experiment is conducted to explore the significance of gender in emotion recognition using random forests. Two models, trained on the first and second database, respectively, and four speakers were used to determine the effects. It is seen that the feature set used in this work performs well for both male and female speakers, yielding approximately 27% average emotion recognition in both models. In addition, the emotions for female speakers were recognized 18% of the time in the first model and 29% in the second. A similar effect is seen with male speakers: the first model yields 36%, the second 28% a verage emotion recognition rate. This illustrates the relationship between the constitution of training data and emotion recognition accuracy.
Go to article

Abstract

Fault detection and location are important and front-end tasks in assuring the reliability of power electronic circuits. In essence, both tasks can be considered as the classification problem. This paper presents a fast fault classification method for power electronic circuits by using the support vector machine (SVM) as a classifier and the wavelet transform as a feature extraction technique. Using one-against-rest SVM and one-against-one SVM are two general approaches to fault classification in power electronic circuits. However, these methods have a high computational complexity, therefore in this design we employ a directed acyclic graph (DAG) SVM to implement the fault classification. The DAG SVM is close to the one-against-one SVM regarding its classification performance, but it is much faster. Moreover, in the presented approach, the DAG SVM is improved by introducing the method of Knearest neighbours to reduce some computations, so that the classification time can be further reduced. A rectifier and an inverter are demonstrated to prove effectiveness of the presented design.
Go to article

Abstract

This paper presents a novel strategy of fault classification for the analog circuit under test (CUT). The proposed classification strategy is implemented with the one-against-one Support Vector Machines Classifier (SVC), which is improved by employing a fault dictionary to accelerate the testing procedure. In our investigations, the support vectors and other relevant parameters are obtained by training the standard binary support vector machines. In addition, a technique of radial-basis-function (RBF) kernel parameter evaluation and selection is invented. This technique can find a good and proper kernel parameter for the SVC prior to the machine learning. Two typical analog circuits are demonstrated to validate the effectiveness of the proposed method.
Go to article

Abstract

In order to make the analog fault classification more accurate, we present a method based on the Support Vector Machines Classifier (SVC) with wavelet packet decomposition (WPD) as a preprocessor. In this paper, the conventional one-against-rest SVC is resorted to perform a multi-class classification task because this classifier is simple in terms of training and testing. However, this SVC needs all decision functions to classify the query sample. In our study, this classifier is improved to make the fault classification task more fast and efficient. Also, in order to reduce the size of the feature samples, the wavelet packet analysis is employed. In our investigations, the wavelet analysis can be used as a tool of feature extractor or noise filter and this preprocessor can improve the fault classification resolution of the analog circuits. Moreover, our investigation illustrates that the SVC can be applicable to the domain of analog fault classification and this novel classifier can be viewed as an alternative for the back-propagation (BP) neural network classifier.
Go to article

This page uses 'cookies'. Learn more