Search results

Filters

  • Journals
  • Date

Search results

Number of results: 10
items per page: 25 50 75
Sort by:

Abstract

The ultrasonic flowmeter which is described in this paper, measures the transit of time of an ultrasonic pulse. This device consists of two ultrasonic transducers and a high resolution time interval measurement module. An ultrasonic transducer emits a characteristic wave packet (transmit mode). When the transducer is in receive mode, a characteristic wave packet is formed and it is connected to the time interval measurement module inputs. The time interval measurement module allows registration of transit time differences of a few pulses in the packet. In practice, during a single measuring cycle a few time-stamps are registered. Moreover, the measurement process is also synchronous and, by applying the statistics, the time interval measurement uncertainty improves even in a single measurement. In this article, besides a detailed discussion on the principle of operation of the ultrasonic flowmeter implemented in the FPGA structure, also the test results are presented and discussed
Go to article

Abstract

In the paper a new implementation of a compact smart resistive sensor based on a microcontroller with internal ADCs is proposed and analysed. The solution is based only on a (already existing in the system) microcontroller and a simple sensor interface circuit working as a voltage divider consisting of a reference resistor and a resistive sensor connected in parallel with an interference suppression capacitor. The measurement method is based on stimulation of the sensor interface circuit by a single square voltage pulse and on sampling the resulting voltage on the resistive sensor. The proposed solution is illustrated by a complete application of the compact smart resistive sensor used for temperature measurements, based on an 8-bit ATxmega32A4 microcontroller with a 12-bit ADC and a Pt100 resistive sensor. The results of experimental research confirm that the compact smart resistive sensor has 1°C resolution of temperature measurement for the whole range of changes of measured temperatures.
Go to article

Abstract

In the external target experiment for heavy ion collisions in the HIRFL-CSR, Multi-Wire Drift Chambers are used to measure the drift time of charged particles to obtain the track information. This 128-channel high precision time measurement module is designed to perform the time digitization. The data transfer is based on a PXI interface to guarantee a high data rate. Test results show that a 100 ps resolution with a data transfer rate up to 40 MBps has been achieved; this module has also been proven to function well with the detector through a commissioning test.
Go to article

Abstract

Most systems used in quantum physics experiments require the efficient and simultaneous recording different multi-photon coincidence detection events. In such experiments, the single-photon gated counting systems can be applicable. The main sources of errors in these systems are both instability of the clock source and their imperfect synchronization with the excitation source. Below, we propose a solution for improvement of the metrological parameters of such measuring systems. Thus, we designed a novel integrated circuit dedicated to registration of signals from a photon number resolving detectors including a phase synchronizer module. This paper presents the architecture of a high-resolution (~60 ps) digital phase synchronizer module cooperating with a multi-channel coincidence counter. The main characteristic feature of the presented system is its ability to fast synchronization (requiring only one clock period) with the measuring process. Therefore, it is designed to work with various excitation sources of a very wide frequency range. Implementation of the phase synchronizer module in an FPGA device enabled to reduce the synchronization error value from 2.857 ns to 214.8 ps.
Go to article

Abstract

The phase jitter enables to assess quality of signals transmitted in a bi-directional, long-distance fibre optic link dedicated for dissemination of the time and frequency signals. In the paper, we are considering measurements of jitter using a phase detector the detected frequency signal and the reference signal are supplied to. To cover the wideband jitter spectrum the detected signal frequency is divided and – because of the aliasing process – higher spectral components are shifted down. We are also examining the influence of a residual jitter that occurs in the reference signal generated by filtering the jitter occurring in the same signal, whose phase fluctuations we intend to measure. Then, we are discussing the evaluation results, which were obtained by using the target fibre optic time and frequency transfer system.
Go to article

Abstract

The paper presents a new elastic scheduling task model which has been used in the uniprocessor node of a control measuring system. This model allows the selection of a new set of periods for the occurrence of tasks executed in the node of a system in the case when it is necessary to perform additional aperiodic tasks or there is a need to change the time parameters of existing tasks. Selection of periods is performed by heuristic algorithms. This paper presents the results of the experimental use of an elastic scheduling model with a GRASP heuristic algorithm.
Go to article

Abstract

Modern control and measurement systems are equipped with interfaces to operate in local area networks and are typically intended to perform complicated data processing and control algorithms. The authors propose a digital system for rapid prototyping of target application devices. The concept solution separates the processing and control section from the hardware interface and user interface section. Both sections constitute independent ARM-based controllers interconnected via a direct USB link. Popular libraries can be used and low-level procedures developed, which enhances the system’s economic viability. A test unit developed for the purpose of the study was built around a SoC ARM7 microsystem and an off-the-shelf palmtop device. It demonstrated a continuous data stream transfer capability up to 150 kB per second, which was sufficient to monitor the performance of an electricity line.
Go to article

Abstract

Prior knowledge of the autocorrelation function (ACF) enables an application of analytical formalism for the unbiased estimators of variance s2a and variance of the mean s2a(xmacr;). Both can be expressed with the use of so-called effective number of observations neff. We show how to adopt this formalism if only an estimate {rk} of the ACF derived from a sample is available. A novel method is introduced based on truncation of the {rk} function at the point of its first transit through zero (FTZ). It can be applied to non-negative ACFs with a correlation range smaller than the sample size. Contrary to the other methods described in literature, the FTZ method assures the finite range 1 < neff ≤ n for any data. The effect of replacement of the standard estimator of the ACF by three alternative estimators is also investigated. Monte Carlo simulations, concerning the bias and dispersion of resulting estimators sa and sa(×), suggest that the presented formalism can be effectively used to determine a measurement uncertainty. The described method is illustrated with the exemplary analysis of autocorrelated variations of the intensity of an X-ray beam diffracted from a powder sample, known as the particle statistics effect.
Go to article

Abstract

An embedded time interval data acquisition system (DAS) is developed for zero power reactor (ZPR) noise experiments. The system is capable of measuring the correlation or probability distribution of a random process. The design is totally implemented on a single Field Programmable Gate Array (FPGA). The architecture is tested on different FPGA platforms with different speed grades and hardware resources. Generic experimental values for time resolution and inter-event dead time of the system are 2.22 ns and 6.67 ns respectively. The DAS can record around 48-bit x 790 kS/s utilizing its built-in fast memory. The system can measure very long time intervals due to its 48-bit timing structure design. As the architecture can work on a typical FPGA, this is a low cost experimental tool and needs little time to be established. In addition, revisions are easily possible through its reprogramming capability. The performance of the system is checked and verified experimentally.
Go to article

This page uses 'cookies'. Learn more