Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The aim of the research was the evaluation of wastewater management in terms of stability and efficiency of wastewater treatment, using statistical quality control. For this purpose, the analysis of the operation and operation of the “Kujawy” Sewage Treatment Plant was made, which is one of the most important and largest sewage management facilities in the city of Cracow. This assessment was done using control charts x for 59 observations. The analysed research period covered the multi-year from 2012 to 2016. Five key pollutant indicators were used to evaluate the work of the tested object: BOD5, CODCr, total suspension, total nitrogen and total phosphorus. In the case of the majority of them, based on the analysis of control charts, full stability of their removal was found in the tested sewage management facility. The exception was total nitrogen, for which periods of disturbed stability of its disposal processes were noted. Analysis of the effectiveness of wastewater treatment showed each time that the required efficiency of reduction of the analysed pollution indicators in the “Kujawy” Sewage Treatment Plant was achieved.
Go to article

Abstract

This study investigates the estimated adsorption efficiency of artificial Nickel (II) ions with perlite in an aqueous solution using artificial neural networks, based on 140 experimental data sets. Prediction using artificial neural networks is performed by enhancing the adsorption efficiency with the use of Nickel (II) ions, with the initial concentrations ranging from 0.1 mg/L to 10 mg/L, the adsorbent dosage ranging from 0.1 mg to 2 mg, and the varying time of effect ranging from 5 to 30 mins. This study presents an artificial neural network that predicts the adsorption efficiency of Nickel (II) ions with perlite. The best algorithm is determined as a quasi-Newton back-propagation algorithm. The performance of the artificial neural network is determined by coefficient determination (R2), and its architecture is 3-12-1. The prediction shows that there is an outstanding relationship between the experimental data and the predicted values.
Go to article

This page uses 'cookies'. Learn more