Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The aim of this paper is to describe a non-invasive method of examination of the local pulse wave velocity. The measurements were carried out in the model of the artery immersed in a water tank. Two synchronized ultrasonic apparatus VED with the ultrasonic radio frequency echoes acquisition system were used for evaluation of the arterial elasticity. The zero-crossing method was used for determination of the diameter changes of the artery model. The transit time between the waveforms of instant artery diameter was measured at two points of the artery model, separated by the distance of 5 cm. The transit time was determined using the criteria of similarity of the first derivatives of the raising slopes of the curves describing instant vessel's diameter changes. The pulse wave velocity obtained by the proposed two-point method was compared with the results obtained by the one-point method based on the modified Bramwell-Hill relation.
Go to article

Abstract

Longitudinal and shear ultrasonic wave velocities were measured versus temperature in the viscosity standards of Paragon S8000S, N30000S and Cannon N2700000. The measurements were performed by the through-transmission method at the frequency of 2 MHz. Ultrasonic pulses were sent via polymethyl methacrylate (PMMA) waveguides between the tips of which a small amount of the particular standard liquid was placed. The velocities of longitudinal and shear waves were determined to depend on the viscosity of the liquid and increase with the viscosity.
Go to article

Abstract

In this paper a possibility of determining a local velocity of the surface acoustic Rayleigh waves using a transducer, with the rigidly connected emitting and receiving parts, is considered. A problem on spatial resolution of such a transducer for investigation of inhomogeneous specimens is also examined. A high spatial resolution can be obtained due to the transducer displacement by a value less than the distance between the emitting and receiving parts. It is shown that in this case it is not necessary to measure the transducer displacement with a high accuracy for precise determination of the velocity. Such an effect is obtained through measuring the velocity of surface waves in one local region of the specimen with respect to the other. The criterion for optimal spatial resolution selection during spatially inhomogeneous specimens study is also proposed. The proposed criterion use is illustrated on the example of the determination of spatial distribution of the surface acoustic velocity in a steel specimen subjected to inhomogeneous plastic deformation.
Go to article

This page uses 'cookies'. Learn more