Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

The article presents selected issues from the Polish Energy Policy draft until 2040. From many issues, the authors chose the ones they considered the most revolutionary. Firstly, the National Power System should be restructured to meet the challenges of a changing environment, be adapted to the growing demand for electricity, and at the same time have the least impact on the natural environment. These goals can be achieved through reforms to reduce the importance of coal in the energy mix and the development of renewable energy sources, especially offshore wind energy. The next tasks are the development of electromobility, enabling the reduction of pollution caused by transport, and, in the longer term, after 2030, the development of nuclear energy in place of the withdrawn coal power.
Go to article

Abstract

Increasing the share of energy production from renewable sources (RES) plays a key role in the sustainable and more competitive development of the energy sector. Among the renewable energy sources, the greatest increase can be observed in the case of solar and wind power generation. It should be noted that RES are an increasingly important elements of the power systems and that their share in energy production will continue to rise. On the other hand the development of variable generation sources (wind and solar energy) poses a serious challenge for power systems as operators of unconventional power plants are unable to provide information about the forecasted production level and the energy generated in a given period is sometimes higher than the demand for energy in all of the power systems. Therefore, with the development of RES, a considerable amount of the generated energy is wasted. The solution is energy storage, which makes it possible to improve the management of power systems. The objective of this article is to present the concept of electricity storage in the form of the chemical energy of hydrogen (Power to Gas) in order to improve the functioning of the power system in Poland. The expected growth in the installed capacity of wind power plants will result in more periods in which excess energy will be produced. In order to avoid wasting large amounts of energy, the introduction of storage systems is necessary. An analysis of the development of wind power plants demonstrates that the Power to Gas concept can be developed in Poland, as indicated by the estimated installed capacity and the potential amount of energy to be generated. In view of the above, the excess electricity will be available for storage in the form of chemical energy of hydrogen, which
Go to article

Abstract

By means of small wind turbines, it is possible to create distributed sources of electricity useful in areas with good wind conditions. Sometimes, however, it is possible to use small wind turbines also in areas characterized by lower average wind speeds during the year. At the small wind turbine design stage, various types of technical solutions to increase the speed of the wind stream, as well as to optimally orientate it, can be applied. The methods for increasing the efficiency of wind energy conversion into electricity in the case of a wind turbine include: the use of a diffuser shielding the turbine rotor and the optimization of blades mounted on the turbine rotor. In the paper, the influence of the diffuser and rotor blades geometry on the efficiency of an exemplary wind turbine for exploitation in the West Pomeranian Province is investigated. The analyses are performed for three types of the diffuser and for three types of rotor blades. Based on them, the most optimal shapes of the diffuser and blades are selected due to the efficiency of the wind turbine. For the turbine with the designed diffuser, calculations of the output power for the assumed different values of the average annual wind speed and the constant Betz power factor and the specified generator efficiency are made. In all the analyzed cases, the amount of energy that can be generated by the turbine during the year is also estimated. Important practical conclusions are formulated on the basis of these calculations. In the final part of the paper, a 3D model of the wind turbine with the diffuser and rotor blades chosen based on earlier analyses is presented. As a material for the diffuser and rotor blades, glass fiber type A is applied. By means of calculations using the finite element method, the limit displacement of the turbine structure under the influence of a hurricane wind are determined. Based on these calculations, the correctness of the modelled small wind turbine structure has been demonstrated.
Go to article

Abstract

This article, as far as possible based on the available literature, empirical measurements, and data from mesoscale models describes and compares expected wind conditions within the Baltic Sea area. This article refers to aspects related to the design and assessment of wind farm wind resources, based on the author’s previous experience related to onshore wind energy. The consecutive chapters of this publication are going to describe the present state and the presumptions relating to the development of wind energy within the Baltic Sea area. Subsequently, the potential of the sea was assessed using mesoscale models and empirical data from the Fino 2 mast that is located approximately 200 kilometers away from the majority of areas indicated in the Polish marine spatial development plan draft of Poland for offshore wind farm development (Maritime Office in Gdynia 2018). In the chapter describing mesoscale models, the author focused his attention on the GEOS5.12.4 model as the source of Modern-Era Retrospective Analysis for Research and Application 2 data, also known as MERRA2 (Administration National Aeronautics and Space Agency, 28), which, starting from February 2016, replaced MERRA data (Thogersen et al. 2016) and have gained a wide scope of applications in the assessment of pre-investment and operational productivity due to a remarkable level of correlation with in-situ data. Model-specific data has been obtained for eight locations, which largely overlap with the locations of the currently existing offshore wind farms within the Baltic Sea area. A significant part of this publication is going to be devoted to the description of the previously mentioned Fino 2 mast and to the analysis of data recorded until the end of 2014 by using the said mast (Federal Maritime and Hydrographic Agency 2018). The analysis has been carried out by means using scripts made in the VBA programming language, making it easier to work with large chunks of data. Measurements from the Fino 2 mast, together with long-term mesoscale model-specific measurements can be used, to some extent, for the preliminary assessment of wind farm energy yield in the areas designated for the development of renewable energy in the Polish exclusive maritime economic zone (Maritime Office in Gdynia 2018). In the final part of this article, pieces of information on the forecasted Baltic Sea wind conditions, especially within the exclusive economic zone of Poland, are going to be summarized. A major focus is going to be put on the differences between offshore and onshore wind energy sources, as well as on further aspects, which should be examined in order to optimize the offshore wind power development.
Go to article

Abstract

In highly developed countries, a significant progress in the use of alternative and clean energy sources has recently been observed. The European Union has implemented a programme to build wind turbines. It is estimated that in the coming years, thanks to the support in tax and credit, the global energy will develop very intensively. Many components of the wind turbines are castings. The basic material used for these castings is ductile iron, which in this particular case must meet high requirements imposed by the operating conditions of wind turbines. Anticipating an increase in customer demand for this type of castings, Krakodlew SA has decided to modernize its foundry using the ability to obtain external financing. The ductile iron manufacturing technology is now being developed and adapted to the specific conditions of the foundry plant, including the melting process yielding cast material with the required chemical composition, the technology of moulding, and the conditions for possible secondary metallurgy, spheroidizing treatment and graphitizing inoculation. The fulfilment of the imposed conditions for the casting production demands the use of advanced casting technologies introduced to the manufacturing process. The development of technology to launch the production of ductile iron castings for the wind power industry was supported by The National Centre for Research and Development (NCBiR). This article presents part of research on the binding kinetics of furan resin sands and choice of their composition for moulds and cores to make heavy castings used as components of equipment for the wind power industry.
Go to article

Abstract

Wind energy has achieved prominence in renewable energy production. There fore, it is necessary to develop a diagnosis system and fault-tolerant control to protect the system and to prevent unscheduled shutdowns. The presented study aims to provide an experimental analysis of a speed sensor fault by hybrid active fault-tolerant control (AFTC) for a wind energy conversion system (WECS) based on a permanent magnet synchronous generator (PMSG). The hybrid AFTC switches between a traditional controller based on proportional integral (PI) controllers under normal conditions and a robust backstepping controller system without a speed sensor to avoid any deterioration caused by the sensor fault. A sliding mode observer is used to estimate the PMSG rotor position. The proposed controller architecture can be designed for performance and robustness separately. Finally, the proposed methodwas successfully tested in an experimental set up using a dSPACE 1104 platform. In this experimental system, the wind turbine with a generator connection via a mechanical gear is emulated by a PMSM engine with controled speed through a voltage inverter. The obtained experimental results show clearly that the proposed method is able to guarantee service production continuity for the WECS in adequate transition.
Go to article

This page uses 'cookies'. Learn more