Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

Wood pellets are classified as a solid biomass type. They are one of the most popular bio-heating fuels used in Europe, especially in the small heating sector, where pellets are burned in low-power domestic boilers. The pellets and automatic pellet-fired heating devices gained popularity due to the increasing air pollution (smog) problem and the low emission limiting campaigns associated with it. Wood pellets are formed as a result of small forestry particles mechanical compression (mainly conifers originated) and they are listed among renewable energy sources. The purpose of the presented studies was to compare the quality of wood pellets used for pellet-fired boilers and to identify, qualitatively and quantitatively, impurities marked in the samples obtained from the domestic market. The application of petrographic analyses, applied so far in relation to fossil fuels, is a presented work innovation for wood pellets. The microscopic analyses were performed on both certified (ENplus/DINplus) and uncertified wood pellets available on the market. Unfortunately, the analysis revealed that the quality requirements were not met, because of the unacceptable contamination presence. The unacceptable organic inclusions in the analyzed samples are fossil coals and their derivatives, coke, and polymeric materials of natural origin. Unacceptable inorganic inclusions determined in the analyzed samples were: glass, slag, rust, pieces of metal, stone powder, plastic, and polymeric materials of inorganic origin.
Go to article

Abstract

CO, NO, NO2 and dust concentrations from combustion of deciduous wood (birch, beech, lime-tree) logs and pellets in two heating boilers (15 and 25 KW), situated in a heat station were investigated. Time dependences of pollutant concentrations as well as the impact of temperature in the combustion chamber and oxygen concentration on pollutant concentrations were presented. Pollutant emission indices have been estimated.
Go to article

Abstract

Tests for combustion of hay and sunflower husk pellets mixed with wood pellets were performed in a horizontal-feed as well as under-feed (retort) wood pellet furnace installed in boilers with a nominal heat output of 15 and 20 kW, located in a heat station. During the combustion a slagging phenomenon was observed in the furnaces. In order to lower the temperature in the furnace, fuel feeding rate was reduced with unaltered air stream rate. The higher the proportion of wood pellets in the mixture the lower carbon monoxide concentration. The following results of carbon monoxide concentration (in mg/m3 presented for 10% O2 content in flue gas) for different furnaces and fuel mixtures (proportion in wt%) were obtained: horizontal-feed furnace supplied with hay/wood: 0/100 - 326; 30/70 - 157; 50/50 - 301; 100/0 - 3300; horizontal-feed furnace supplied with sunflower husk/wood: 50/50 - 1062; 67/33 - 1721; 100/0 - 3775; under-feed (retort) furnace supplied with hay/wood: 0/100 - 90; 15/85 - 157; 30/70 - 135; 50/50 - 5179; under-feed furnace supplied with sunflower husk/wood: 67/33 - 2498; 100/0 - 3128. Boiler heat output and heat efficiency was low: 7 to 13 kW and about 55%, respectively, for the boiler with horizontal-feed furnace and 9 to 14 kW and 64%, respectively, for the boiler with under-feed furnace.
Go to article

Abstract

The impact of the fuel feeding mode (continuous or periodic with different stand-by/operation time ratios) on carbon monoxide (CO) and nitrogen oxides (NO, NOx) concentration values in the flue gas was analysed for coniferous wood pellet firing. Experiments were performed in a 25 kW water boiler equipped with an over-fed wood pellet furnace located in a full scale heat station simulating real-life conditions. Influence of oxygen concentration and temperature in the combustion chamber on carbon monoxide and nitrogen oxide concentrations was presented in diagrams. Dust and hydrocarbon concentrations were also monitored. It was concluded that the commonly used periodic fuel supply does not necessarily cause a significant increase of carbon monoxide concentration, as compared to the continuous fuel feeding mode. Continuous fuel supply can even induce higher carbon monoxide concentrations when fuel mass stream is not chosen properly. Each time new fuel type is used in a specific furnace, one should perform experiments to determine the adequate settings (stand-by/operation time ratio, fuel mass streams, air stream) to obtain the optimal, lowest possible emission for a certain boiler heat output
Go to article

Abstract

In the paper the influence of moisture content of wood on the heat losses and thermal efficiency of a boiler is analysed. The moisture content of wood has a negative effect, especially on flue gas loss. The mathematical dependence of the thermal efficiency of a boiler is presented for the following boundary conditions: the moisture content of wood 10–60%, range of temperatures of emitted flue gases from the boiler into the atmosphere 120–200 C, the emissions meeting the emission standards: carbon monoxide 250 mgm-3, fly ash 50 mgm-3and the heat power range 30–100%.
Go to article

Abstract

It can be expected that there is a considerable correlation between combustion air flow rate and the concentrations of carbon monoxide, hydrocarbons and nitrogen oxide in the flue gas. The influence of temperature and oxygen concentration in the combustion zone on the concentrations of carbon monoxide, hydrocarbons and nitrogen oxide in the flue gas, for high and low combustion air flow, was analysed. Oxygen concentration for which the concentration of carbon monoxide is the lowest was determined, as well as the mutual relation between carbon monoxide and nitrogen oxide concentration.
Go to article

This page uses 'cookies'. Learn more