Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

The subject of the numerical investigation is an ellipsoidal head with a central (axis-symmetrical) nozzle. The nozzle is loaded by axial load force. The ellipsoidal head is under axial-symmetrical compression load. The numerical FEM model is elaborated. The calculation will provide the critical loads and equilibrium paths for the sample head.. The investigation will measure the influence of the diameter of the nozzle on the critical state of the ellipsoidal head.
Go to article

Abstract

Buckling of the stiffened flange of a thin-walled member is reduced to the buckling analysis of the cantilever plate, elastically restrained against rotation, with the free edge stiffener, which is susceptible to deflection.Longitudinal stress variation is taken into account using a linear function and a 2nd degree parabola. Deflection functions for the plate and the stiffener, adopted in the study, made it possible to model boundary conditions and different buckling modes at the occurrence of longitudinal stress variation. Graphs of buckling coefficients are determined for different load distributions as a function of the elastic restraint coefficient and geometric details of the stiffener. Exemplary buckling modes are presented.
Go to article

Abstract

The paper presents a certain way which determines the critical buckling force for a micro-heterogeneous FGM plate band. A stiffness matrix of an individual cell of such band, different for various cells, has been determined. The obtained matrix can also be treated as a variable stiffness matrix of a “superelement” in the Finite Element Method. A computational algorithm for the critical force as well as the way of testing of its correctness has also been presented. The results obtained for various support conditions have been compared to the values known from the literature. The influence of the number of cells on the critical buckling force has been investigated.
Go to article

Abstract

A buckling analysis of temperature-dependent embedded plates reinforced by single-walled carbon nanotubes (SWCNTs) subjected to a magnetic field is investigated. The SWCNTs are distributed as uniform (UD) and three types of functionally graded nanotubes (FG), in which the material properties of the nano-composite plate are estimated based on the mixture rule. The surrounding temperature-dependent elastic medium is simulated as Pasternak foundation. Based on the orthotropic Mindlin plate theory, the governing equations are derived using Hamilton's principle. The buckling load of the structure is calculated based on an exact solution by the Navier method. The influences of elastic medium, magnetic field, temperature and distribution type, and volume fractions of SWCNT are shown on the buckling of the plate. Results indicate that CNT distribution close to the top and bottom are more efficient than that distributed near the mid-plane for increasing the stiffness of the plates.
Go to article

Abstract

Assessment of the flexural buckling resistance of bisymmetrical I-section beam-columns using FEM is widely discussed in the paper with regard to their imperfect model. The concept of equivalent geometric imperfections is applied in compliance with the so-called Eurocode’s general method. Various imperfection profiles are considered. The global effect of imperfections on the real compression members behaviour is illustrated by the comparison of imperfect beam-columns resistance and the resistance of their perfect counterparts. Numerous FEM simulations with regard to the stability behaviour of laterally and torsionally restrained steel structural elements of hot-rolled wide flange HEB section subjected to both compression and bending about the major or minor principal axes were performed. Geometrically and materially nonlinear analyses, GMNA for perfect structural elements and GMNIA for imperfect ones, preceded by LBA for the initial curvature evaluation of imperfect member configuration prior to loading were carried out. Numerical modelling and simulations were conducted with use of ABAQUS/Standard program. FEM results are compared with those obtained using the Eurocode’s interaction criteria of Method 1 and 2. Concluding remarks with regard to a necessity of equivalent imperfection profiles inclusion in modelling of the in-plane resistance of compression members are presented.
Go to article

Abstract

Thin-walled bars currently applied in metal construction engineering belong to a group of members, the cross-section resistance of which is affected by the phenomena of local or distortional stability loss. This results from the fact that the cross-section of such a bar consists of slender-plate elements. The study presents the method of calculating the resistance of the cross-section susceptible to local buckling which is based on the loss of stability of the weakest plate (wall). The "Critical Plate" (CP) was identified by comparing critical stress in cross-section component plates under a given stress condition. Then, the CP showing the lowest critical stress was modelled, depending on boundary conditions, as an internal or cantilever element elastically restrained in the restraining plate (RP). Longitudinal stress distribution was accounted for by means of a constant, linear or non-linear (acc. the second degree parabola) function. For the critical buckling stress, as calculated above, the local critical resistance of the cross-section was determined, which sets a limit on the validity of the Vlasov theory. In order to determine the design ultimate resistance of the cross-section, the effective width theory was applied, while taking into consideration the assumptions specified in the study. The application of the Critical Plate Method (CPM) was presented in the examples. Analytical calculation results were compared with selected experimental findings. lt was demonstrated that taking into consideration the CP elastic restraint and longitudinal stress variation results in a more accurate representation of thin-walled element behaviour in the engineering computational model
Go to article

This page uses 'cookies'. Learn more