The quarterly Polish Polar Research edited by the Committee on Polar Research of the Polish Academy of Sciences is an international journal publishing original research articles presenting the results of studies carried out in polar regions.
All papers are peer-reviewed and published in English.
The Editorial Advisory Board includes renowned scientist from Poland and from abroad.
Polish Polar Research is indexed in Science Citation Index Expanded, Journal Citation Reports/Science Edition, Biological Abstracts, BIOSIS Previews, Cold Regions Bibliography, Antarctic Literature, Geological Abstracts, Polish Scientific Journals Contents - Agricultural and Biological Sciences, Quarterly Review, and Zoological Record.
FRAUD NOTICE
We have been made aware of certain fraudulent activities that have been claiming to represent Polish Polar Research. These activities include a fake, predatory website and unsolicited emails. The aim of the fraud is to trick suspected authors/researchers into believing they are communicating with a journal editor in order to obtain their personal information, scientific results and/or money. Polish Polar Research’s name, logo and other information have been used without permission to try to convey authenticity. If you have any concerns or see suspicious communications that reference Polish Polar Research, please report to Editors-in-Chief. Legitimate information regarding Polish Polar Research and its manuscripts can always be found on our website at http://journals.pan.pl/ppr/. We recommend that authors do not respond to any unsolicited offers of manuscript submissions nor enter any monetary agreement.
Polish Polar Research is an open-access journal in which archive issues are freely accessible and articles are published at no cost to authors.
Skeletal remains of penguins from the Eocene La Meseta Formation (Seymour Island, Antarctica) constitute the only extensive fossil record of Antarctic Sphenisciformes. No articulated skeletons are known, and almost all fossils occur as single isolated elements. Most of the named species are based on tarsometatarsi (for which the taxonomy was revised in 2002). Here, 694 bones (from the Polish collection) other than tarsometatarsi are reviewed, and allocated to species. They confirm previous conclusions and suggest that ten species grouped in six genera are a minimal reliable estimate of the Eocene Antarctic penguin diversity. The species are: Anthropornis grandis, A. nordenskjoeldi, Archaeospheniscus wimani, Delphinornis arctowskii, D. gracilis, D. larseni, Marambiornis exilis, Mesetaornis polaris, Palaeeudyptes gunnari and P. klekowskii. Moreover, diagnoses of four genera (Anthropornis, Archaeospheniscus, Delphinornis and Palaeeudyptes) and two species (P. gunnari and P. klekowskii) are supplemented with additional, non-tarsometatarsal features. Four species of the smallest penguins from the La Meseta Formation (D. arctowskii, D. gracilis, M. exilis and M. polaris) seem to be the youngest taxa within the studied assemblage - their remains come exclusively from the uppermost unit of the formation. All ten recognized species may have co-existed in the Antarctic Peninsula region during the Late Eocene epoch.
The mathematical model that described the relationship between cell-count decay and storage time in fixed bacterioplankton samples from three Antarctic lakes of differing trophic status was determined after a one-year experiment. Bacterial density was estimated by epifluorescence microscopy. Cell count data fitted a negative exponential model in all three cases (p < 0.00001). However, the slopes of their curves were significantly different (p < 0.01), as well as the percentage of bacterial loss after a period of two months. This fact might be related to the limnological characteristics of the water bodies, though the individual genetic variability of their bacterioplankton should not be left aside. Original bacterial numbers in the samples could also be a reason of the differences observed in the pattern of decay in cell counts. Thus, applying a general decay function to any sample and assuming the idea that freshwater bacterioplankton samples can be stored for a two month-period before the bacterial counts decay, can lead to an erroneous estimation of bacterial numbers with direct consequences in ecological investigations.
This paper includes a check-list of Recent Svalbard marine ostracods based on published sources and on diploma theses as well as some new studies. This is the first study of this group of crustaceans from Hornsund. A total of 41 species belonging to 12 families were collected at 55 sampling stations from dredged sediments. Seven species are reported for the first time from the Svalbard Archipelago. Polycope orbicularis Sars is the most abundant species in the present fauna. Species compositions of Hornsund and the Liefdefjorden are seen to have the highest similarity (S = 50.6).
The fusulinid foraminifers of Schellwienia arctica (Schellwien, 1908) have been investigated from Polakkfjellet Mt., south Spitsbergen, and used as biostratigraphic marker for the latest Carboniferous earliest Permian strata of the Treskelodden Formation. A series of thin sections enable to investigate the internal structure and growth pattern of individual specimens. The observed variation of growth suggests dynamic environmental conditions at the investigated location and most likely over one-year long life span of this foraminifer.
Editors-in-Chief
Magdalena BŁAŻEWICZ (Life Sciences), University of Łódź, Poland
e-mail:
magdalena.blazewicz@biol.uni.lodz.pl
Wojciech MAJEWSKI (Geosciences), Institute of Paleobiology PAS, Poland
e-mail:
wmaj@twarda.pan.pl
Michał ŁUSZCZUK (Social Science and Hummanities), UMCS, Poland
e-mail:
michal.luszczuk@poczta.umcs.lublin.pl
Associate Editors
Piotr JADWISZCZAK (Białystok),
e-mail: piotrj@uwb.edu.pl
Krzysztof JAŻDŻEWSKI (Łódź),
e-mail: krzysztof.jazdzewski@biol.uni.lodz.pl
Monika KĘDRA (Sopot)
e-mail: kedra@iopan.gda.pl
Ewa ŁUPIKASZA (Sosnowiec)
e-mail: ewa.lupikasza@us.edu.pl
Piotr PABIS (Łódź),
e-mail: cataclysta@wp.pl
Editorial Advisory Board
Angelika BRANDT (Hamburg),
Claude DE BROYER (Bruxelles),
Peter CONVEY (Cambridge, UK),
J. Alistair CRAME (Cambridge, UK),
Rodney M. FELDMANN (Kent, OH),
Jane E. FRANCIS (Cambridge, UK),
Andrzej GAŹDZICKI (Warszawa)
Aleksander GUTERCH (Warszawa),
Jacek JANIA (Sosnowiec),
Jiří KOMÁREK (Třeboň),
Wiesława KRAWCZYK (Sosnowiec),
German L. LEITCHENKOV (Sankt Petersburg),
Jerónimo LÓPEZ-MARTINEZ (Madrid),
Sergio A. MARENSSI (Buenos Aires),
Jerzy NAWROCKI (Warszawa),
Ryszard OCHYRA (Kraków),
Maria OLECH (Kraków)
Sandra PASSCHIER (Montclair, NJ),
Jan PAWŁOWSKI (Genève),
Gerhard SCHMIEDL (Hamburg),
Jacek SICIŃSKI (Łódź),
Michael STODDART (Hobart),
Witold SZCZUCIŃSKI (Poznań),
Andrzej TATUR (Warszawa),
Wim VADER (Tromsø),
Tony R. WALKER (Halifax, Nova Scotia),
Jan Marcin WĘSŁAWSKI (Sopot) - President.
Geosciences
Wojciech
MAJEWSKI
e-mail: wmaj@twarda.pan.pl
phone:
(48 22) 697 88 53
Instytut Paleobiologii PAN
ul. Twarda 51/55
00-818
Warszawa, POLAND
Life Sciences
Magdalena
BŁAŻEWICZ
e-mail: magdalena.blazewicz@biol.uni.lodz.pl
phone:
(48 22) 635 42 97
Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki
ul.
S. Banacha 12/16
90-237 Łódź, POLAND