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1. Introduction

Machine learning models are constructed inductively represen-
tations of knowledge. So-called white-box models, such as de-
cision trees or rules are interpretable, in this sense that the user
can understand the reasons behind the decision. Conversely,
black-box models, such as neural networks, are opaque to the
user. They provide a result for a given set of inputs, but an expla-
nation of why such a result was provided, is not available to the
user. On the other hand, recent years showed that for some tasks
deep neural networks can offer huge improvements over white-
box models, reaching or even surpassing human-level perfor-
mance.

Ontologies are also representations of knowledge, but they
are by definition white-box: all the represented knowledge is
explicit. Their applications are widespread and they are used,
e.g., to convey domain-specific information in multi-agent sys-
tems [1], in competence management systems for education
[2, 3], or to represent the domain of interest for a robotic sys-
tem [4]. Unfortunately, the process of constructing an ontol-
ogy is labor-intensive and means of supporting the responsi-
ble person, i.e., the ontology engineer, are needed. This prob-
lem is addressed by an area called ontology learning. The ap-
proaches used so far to ontology learning are similar to those
used for learning white-box machine learning models and con-
cerned mostly with the efficiency of traversing the search space
and selecting measures with desirable properties.

In this paper, we propose to bridge the gap between efficient
black-box learning and transparent white-box ontology learn-
ing. We hypothesize that the latent semantics of graph embed-
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dings along with memory-like properties of recurrent neural
networks (RNNs) can be exploited in order to evaluate prop-
erty characteristics axioms that could extend the considered on-
tology. We believe that the sequential nature of the considered
learning examples requires the usage of a recurrent architecture.

The contribution of this work is as follows: we propose a
method explaining a deep RNN in order to score new axioms
representing property characteristics that could be added to
the ontology. The method is capable of scoring axioms corre-
sponding to all the property characteristics defined by the RDF-
based semantics of the Web Ontology Language OWL 2 [5]:
functional, inverse functional, reflexive, irreflexive, symmetric,
asymmetric, transitive. The obtained ontology is a surrogate
model, i.e., an interpretable representation of some parts of the
knowledge gathered in the neural network [6].

The rest of the paper is organized as follows: Section 2 is
devoted to the basics of RDF and OWL, and in Section 3 we re-
view the related literature. Section 4 is devoted to the details of
the proposed approach, from preparing the data, to training the
neural network, to extracting the explanations. We report the re-
sults of an experimental evaluation in Section 5, offer extended
discussion of the results in Section 6 and conclude in Section 7.

2. Preliminaries

Resource Description Framework (RDF) is a popular, univer-
sal knowledge representation formalism equipped with formal
semantics and standardized by the W3C [7]. The basic notion
of RDF is an RDF triple consisting of a subject, a predicate
and an object and stating that the subject is related to the object
with the relation denoted by the predicate. A set of RDF triples
forms an RDF graph, and the set of subjects and objects forms
a set of RDF nodes of the graph, while each triple represents a
labeled edge.
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In general, an RDF node can be either an Internationalized
Resource Identifier (IRI), a blank node, or a literal. An IRI is
a globally-unique identifier for an entity, while a blank node
represents an identifier, which is meaningful only in the scope
of the considered graph. Usually, it is assumed that a single
entity may be represented by multiple IRIs and blank nodes.
A literal is a concrete value, such as a string of character or a
number.

In the paper, we represent RDF graphs with a subset
of the Turtle notation [8]: each triple is written in the or-
der subject-predicate-object and ended with a dot. Through-
out the paper we are interested only in triples consist-
ing only of IRIs, we thus do not introduce the notation
for other kinds of nodes. Frequently, an IRI is a long
string, so for sake of clarity, we replace common names-
paces with prefixes, and so dbr: stands for http://dbpedia.
org/resource/, dbo: stands for http://dbpedia.org/ontology/
and dul: stands for http://www.ontologydesignpatterns.org/
ont/\penalty\z@{}dul/DUL.owl#, i.e., a foundational ontology
DOLCE+DnS Ultralite. A sample RDF graph consisting of 10
triples, an excerpt from DBpedia [9], is presented in Table 2.

To represent taxonomical knowledge related to an RDF graph
one may use an ontology expressed in Web Ontology Language
OWL 2 [5]. An ontology consists of a set of axioms, equipped
with a formal semantics underpinned by the Description Log-
ics, and enabling deductive reasoning. An axiom consists of en-
tities, corresponding to RDF nodes, and constructors, that pro-
vide the necessary expressiveness Entities in an ontology can be
divided into three separate categories: individuals, representing
objects of the considered domain; classes, representing sets of
individuals; properties, which denote relations between pairs of
individuals (object properties) or between individuals and liter-
als (datatype properties). Properties are an ontological view on
RDF predicates.

In this paper, we are interested in axioms representing char-
acteristics of object properties. OWL defines 7 such character-
istics, which we present briefly using RDF triples notation:

functional For a functional property p, if (x, p,y1) and
(x, p,y2) are true, then y1 = y2.

inverse functional For an inverse functional property p, if
(x1, p,y) and (x2, p,y) are true, then x1 = x2.

reflexive For a reflexive property p, (x, p,x) is true for any in-
dividual x.

irreflexive For an irreflexive property p, (x, p,x) is false for
any individual x.

symmetric For a symmetric property p, if (x, p,y) is true, then
(y, p,x) is true.

asymmetric For a asymmetric property p, if (x, p,y) is true,
then (y, p,x) is false.

transitive For a transitive property p, if (x, p,y) and (y, p,z)
are true, then (x, p,z) is true.

To represent OWL axioms we use the Manchester syntax
[10]. As we are interested only in the property characteris-
tics axioms, all the axioms considered in the paper are of the
form: ObjectProperty: p Characteristics: c, where p denotes
the property and c denotes the characteristic.

3. Related work

Research on inducing new ontological axioms from RDF data
concentrated mostly on various ways to extend a class hierar-
chy. Potoniec et al. considered mining subclass axioms with
a fixed superclass and arbitrary OWL 2 EL class expression
as a subclass [11]. Völker et al. proposed approaches to auto-
matically discover class disjointness axioms by using associa-
tive rule mining and by posing the problem as a classification
task [12]. Potoniec and Ławrynowicz presented an approach to
split an existing class into a set of subclasses, each equipped
with a formal definition through EquivalentTo axiom. The ap-
proach is based on frequent pattern mining [13] and poses the
problem of splitting the class as an integer mathematical pro-
gramming task [14]. Lehmann et al. developed DL-Learner, a
tool for inductive learning in the Semantic Web, based on re-
finement operators [15]. Their goal was to learn complete defi-
nitions for the existing classes in an ontology.

Conversely, interest in mining property axioms was much
more limited. Fleischhacker et al. presented a method for min-
ing domain and range restrictions and property characteristics
in the context of OWL 2 RL. The approach uses association rule
mining on top of a propositionalized RDF graph [16].

More broadly, logical rules, OWL class expressions, and
similar constructs were considered as building blocks of the
hypothesis spaces for learning algorithms. For example, algo-
rithms were proposed to solve classification tasks [17], to com-
plete knowledge bases [18], to discover frequent patterns [13].
A comprehensive overview of approaches to ontology learning
is presented in [19].

In recent years, the neural networks are on the rise and
there are applications to many areas of computing. One of the
popular approaches is to create embeddings, i.e., dense, low-
dimensional representations of sparse and high-dimensional
vectors of features, used in order to reduce dimensionality while
keeping all the necessary information [20]. One of the particu-
lar applications is computing embeddings to preserve seman-
tic information of a knowledge graph [21–23]. In the context
of knowledge graphs, neural networks are also employed to
translating from natural language to ontological axioms [24]
and providing knowledge graph-based recommendations [25]
have been proposed. In particular, Ghiasnezhad Omran et al.
described a method for link prediction based on rules mined on
top of matrix-based embeddings [26]. Yang et al. considered
various embeddings methods and showed that they can be used
to extract explicitly represented rules [27].

4. Proposed approach

An overview of the proposed approach is presented in Fig. 1
and the following sections describe its details.

4.1. Data preparation. Given is an OWL 2 ontology O, an
RDF graph G such that O∪G is consistent and a set of proper-
ties P, whose characteristics are to be discovered. First, we split
G into a training set Gtrain and a scoring set Gscore in such a way
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Fig. 1. An overview of the presented approach. First, an RDF graph,
optionally enhanced with an ontology is used to generate a set of se-
quences, which are then labeled according to the considered charac-
teristic. They are then split into a training and scoring set (Subsec-
tion 4.1). The training set is used to train an RNN (Subsection 4.2).
Finally, the RNN is used to make classification on the scoring set, and
the results are used to score the candidate axioms (Subsection 4.3). We
used italics to indicate datasets and tools we used in the experiment de-

scribed in Section 5

that the relative numbers of triples with each of the properties
are approximately the same in G, Gtrain and Gscore. Then, we
generate the sequences of triples using patterns presented in Ta-
ble 1. For a fixed property p, they correspond to seven possible
candidate axioms describing characteristics of p. We consider a
single characteristic at a time, i.e., while generating sequences,
one selects only the patterns corresponding to this characteris-
tics. Moreover, we represent reflexive/irreflexive and symmet-
ric/asymmetric as single patterns as they are opposites: a piece
of evidence against one (e.g., reflexive) is a piece of evidence
in favor of the other (e.g., irreflexive).

Table 1
Patterns used to construct sequences of triples for the neural network,
based on [5]. Premises must be present in the graph to construct a se-
quence and the presence of conclusions in the graph is used as a label
for the sequence. The variables are denoted by x,y,z, and different vari-
ables represent different IRIs. There are two conclusions correspond-
ing to (ir)reflexivity, as each triple yields two conclusions, thus a single

triple generates two sequences.

characteristics premises conclusions

functional (x, p,y),(x, p,z) (y,owl:sameAs,z)
inverse functional (y, p,x),(z, p,x) (y,owl:sameAs,z)
(ir)reflexive (s, p,o) (s, p,s),(o, p,o)
(a)symmetric (s, p,o) (o, p,s)
transitive (x, p,y),(y, p,z) (x, p,z)

For each set of triples from G matching the premises of a
pattern, we generate a sequence consisting of these triples and
the conclusions prescribed by the pattern. The set of sequences
is then split into a training set Strain and a scoring set Sscore: a
sequence is assigned to Sscore if any of the triples in its premises
is in the set Gscore and to Strain otherwise. This ensures that no
triple from Gscore is present in Strain and thus available for the
network during training. All the sequences in Strain are labeled:
if the conclusions follow from O∪Gtrain, the sequence is la-
beled with 1, otherwise with 0.

Consider triples presented in Table 2. Assume that triples
T1–T6 represent a training graph Gtrain, and triples S1–S3 a
scoring graph Gscore. The triple X is a part of neither and we
assume no preexisting ontology.

Table 2
An RDF graph used in the running example. Triples T1–T6 represent a
training graph, triples S1–S3 a scoring graph and triple X does not be-
long to either of the graphs, and is presented here only for convenience.

We use : to denote the dbr: prefix here.

T1 :Ibaraki_dialect dbo:languageFamily :Kanto_dialect.

T2 :Ibaraki_dialect dbo:languageFamily :Japonic_languages.

T3 :Tokyo_dialect dbo:languageFamily :Kanto_dialect.

T4 :Tokyo_dialect dbo:languageFamily :Japonic_languages.

T5 :Kanto_dialect dbo:languageFamily :Japonic_languages.

T6 :Shikoku_dialect dbo:languageFamily :Japonic_languages.

S1 :Iyo_dialect dbo:languageFamily :Shikoku_dialect.

S2 :Iyo_dialect dbo:languageFamily :Japonic_languages.

S3 :Sanuki_dialect dbo:languageFamily :Shikoku_dialect.

X :Sanuki_dialect dbo:languageFamily :Japonic_languages.

For example, consider transitivity of the property
p = dbo:languageFamily, represented as the following
axiom: ObjectProperty: dbo:languageFamily
Characteristics: Transitive .

First, we construct the following sequences of triples, de-
noted STx, from the graph using the pattern for transitive
characteristics presented in Table 1: ST1 = (T1,T5,T2), ST2 =
(T3,T5,T4), ST3 = (S1,T6,S2), ST4 = (S3,T6,X). In each se-
quence, the first two triples correspond to premises and the
last one is a conclusion. Observe that the sequence ST4 is con-
structed even though X is not present in the considered graph.
The sequence would not be constructed, should either S3 or T6
be missing from the graphs.

We now label the sequences. Sequences ST1, ST2 and ST3
are labeled with 1, as their conclusions (respectively: T2,T4,S2)
follow from the graphs. Sequence ST4 is labeled with 0, as X
does not follow from the graphs. Sequences ST1 and ST2 will
be used as training sequences, as they do not contain any triples
from the scoring graph. Sequences ST3 and ST4 will be used as
scoring sequences.

4.2. Neural network. We use a deep RNN for classifying se-
quences. The distinguishing property of RNNs takes into ac-
count the output from the earlier stages of processing a given
sequence. In our case this simulates the reasoning procedure:
given the premises, are the given conclusions valid?
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Fig. 2. An architecture of an RNN for sequences of length 3, described in details in Subsection 4.2

The architecture of the network is presented in Fig. 2. The
network first encodes a sequence of triples into a sequence of
the corresponding dense representations obtained by using pre-
trained RDF2Vec embeddings [21]. An embedding for each IRI
has a dimension of 200 and, for each triple, they are concate-
nated to form a single vector of length 600. Then, we stack 5
layers of 200 Gated Recurrent Units (GRU) each [28] and sep-
arate them with dropout layers [29] to avoid over-fitting. We
preferred GRU over Long-Short Term Memory (LSTM) units,
as they are more computationally efficient, but frequently offer
a comparable performance [30]. On the last outputs of the last
layer, we place a single neuron with a sigmoid activation func-
tion, and we threshold its output at 0.5 to obtain a label for the
given sequence: 1 if the conclusion is valid (according to the
RNN) and 0 otherwise.

4.3. Explanation generation. At this stage, the neural net-
work is trained and their weights represent some knowledge
about the presented sequences and thus the underlying RDF
graph and ontology. We now aim to extract this black-box
knowledge to obtain a white-box representation of ontological
axioms.

To achieve this, we split Sscore into disjoint subsets Sp
score,

each such that all the triples in the sequences of the subset use
the same property p. For each of the sets Sp

score, we then use
the neural network to perform classification and obtain a set of
labels. We average them and get a single score for each of the
sets Sp

score, i.e., a single score for each property. The score is
a measure of confidence of the neural network about the axiom
representing the considered characteristics of the property. Such
an axiom is a potential explanation for the behavior of the neu-
ral network. The axioms that scored high enough are presented
to an ontology engineer for validation.

Continuing the example, we split the set Sscore and ob-
tain a single subset Sdbo:languageFamilyscore consisting of
ST3 and ST4. We perform classification with the RNN
and obtain labels for the sequences ST3 and ST4. As-
sume that in both cases the label is 1. Averaging the

labels we obtain the score of 1 for the considered ax-
iom ObjectProperty: dbo:languageFamily
Characteristics: Transitive .

5. Experimental evaluation

The goal of the presented experiment is to answer the following
research question: is the approach presented in Section 4 capa-
ble of extracting explanations for the neural network behavior
in a form of ontological axioms?

In order to answer this question, we use DBpedia 2016-10 as
the dataset of choice and compute the axioms out of a neural
network trained on the dataset. To be able to perform a com-
parison, we introduce a simple baseline and establish a gold
standard. We perform the comparison twofold: casting it as a
ranking comparison problem and as a classification problem,
and we leverage appropriate measures to summarize the results
and provide evidence related to the research question.

5.1. Setup. We implemented the approach using TensorFlow
1.12 and Python 3.5.3. We used Adam optimizer with the de-
fault settings and trained the network for 10 epochs. We used
DBpedia 2016-10 as the graph and pre-trained RDF2Vec em-
beddings [21]. We removed sequences using IRIs for which em-
beddings were not available. We considered all 653 properties
from the DBpedia ontology and dropped those that occurred as
the predicate of fewer than 100 triples in the graph, resulting in
496 properties. The limit of 100 triples was posed to ensure that
the neural network is capable of learning the characteristics of
the considered property.

We used at most 5,000,000 training sequences and required
that

∣∣Sp
score

∣∣ ≥ 10 in order to ensure that the final scoring of an
axiom is not based on only a very small number of sequences so
that any single change does not fundamentally change the final
score. In the example considered in the previous section, there
were only two sequences in Sscore, and thus any single change
in the labeling caused the score of the axiom to leap from 1
to 0.5.
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5.2. Results. Considering transitivity, we report the scores
over 0.1 in Table 3, and for symmetry and asymmetry we re-
port scores over 0.01 in Table 4. There were only 2 proper-
ties with a non-zero score for reflexivity: dbo:state (score

Table 3
Properties with score above 0.1 (column neural), according to the ap-
proach presented in Section 4, when considering transitivity axioms.
For comparison, the column baseline reports the scores of the baseline
approach, presented in Subsection 5.3. The last column denotes the
gold standard described in Subsection 6.2: 1 for a transtivie property

and 0 for a non-necessarily transitive property

neural baseline gold

dbo:subregion

dbo:division

dbo:sisterNewspaper

dbo:locatedInArea

dbo:languageFamily

dbo:isPartOfWineRegion

dbo:similar

dbo:isPartOf

dbo:genus

dbo:class

dbo:country

dbo:family

dbo:sisterStation

dbo:presenter

dbo:associate

dbo:series

dbo:order

dbo:sourcePlace

dbo:sourceMountain

dbo:archipelago

0.913 0.739 1.000

0.900 0.945 0.000

0.891 0.637 0.000

0.881 0.982 1.000

0.879 0.771 0.000

0.862 0.776 1.000

0.837 0.468 0.000

0.782 0.720 0.000

0.697 0.826 0.000

0.692 0.828 0.000

0.612 0.617 1.000

0.538 0.479 0.000

0.508 0.620 0.000

0.333 0.573 0.000

0.320 0.288 1.000

0.277 0.290 0.000

0.217 0.381 0.000

0.182 0.456 0.000

0.156 0.456 0.000

0.138 0.300 0.000

0.0

0.2

0.4

0.6

0.8

1.0

Table 4
Properties with score above 0.01 (column neural), according to the ap-
proach presented in Section 4, when considering symmetry and asym-
metry axioms. For comparison, the column baseline reports the scores
of the baseline approach, presented in Subsection 5.3. The last column
denotes the gold standard described in Subsection 6.1: 1 for symmet-

ric, 0 for asymmetric, and .5 for neither

neural baseline gold

dbo:neighboringMunicipality

dbo:sisterStation

dbo:sisterNewspaper

dbo:formerPartner

dbo:currentPartner

dbo:spouse

dbo:similar

dbo:relative

dbo:related

dbo:twinTown

dbo:rival

dbo:hasJunctionWith

dbo:associatedBand

dbo:associate

dbo:routeJunction

dbo:associatedMusicalArtist

dbo:relation

dbo:jointCommunity

dbo:partner

dbo:part

dbo:usingCountry

dbo:relatedMeanOfTransportation

0.959 0.828 1.000

0.906 0.713 1.000

0.798 0.596 1.000

0.737 0.769 1.000

0.719 0.832 1.000

0.681 0.575 1.000

0.324 0.418 1.000

0.230 0.355 1.000

0.177 0.290 1.000

0.148 0.139 1.000

0.127 0.365 0.500

0.125 0.163 0.000

0.106 0.176 0.000

0.096 0.408 1.000

0.095 0.094 1.000

0.081 0.176 0.000

0.063 0.260 1.000

0.037 0.015 0.500

0.036 0.389 1.000

0.024 0.020 0.500

0.012 0.024 0.000

0.011 0.137 1.000

0.0

0.2

0.4

0.6

0.8

1.0

0.004) and dbo:isPartOf (score 0.001). It was not possi-
ble to meaningfully evaluate functional and inverse functional
characteristics, as the used graph does not contain the relevant
owl:sameAs statements. The full results, along with the trained
model and the source code are published at http://doi.org/10.
5281/zenodo.3952397.

5.3. Baseline. To provide a baseline for our method, we pro-
pose a simple counting approach. For a given property p, a
given characteristic, and an RDF graph G, we generate all
triples that are direct logical conclusions from the graph as-
suming that p has the considered characteristic, arriving at a
graph C. The expected conclusions are given by Table 1. Then,
we count the number of triples of C that are present in G and
divide by the cardinality of C, obtaining the final score ξ in the
range [0,1], where 0 means that none of the expected logical
conclusions was present in the graph, while 1 means that all of
them were present. If C is empty, we assume the score to be 0,
as there is no evidence to support the considered axiom:

ξ =




|C∩G|
|C| C �= /0 ,

0 C = /0 .

For transitivity, there are 25 properties with ξ = 1, reported in
Table 5, but it seems they all represent coincidences due to very

Table 5
Properties with the highest baseline score ξ = 1.0 when considering
transitivity. The column |C| reports the size of the corresponding set
C, while the column # triples reports the number of triples with the

considered property in the graph G

property |C| # triples
dbo:twinCountry 13 212
dbo:usedInWar 11 4002
dbo:guest 10 31740
dbo:showJudge 9 2123
dbo:vehicle 6 173
dbo:narrator 5 4809
dbo:militaryUnit 4 12305
dbo:musicalArtist 3 51667
dbo:musicalBand 3 51667
dbo:portrayer 3 5439
dbo:wineRegion 3 309
dbo:sport 2 5201
dbo:editor 2 4914
dbo:lastAppearance 2 1664
dbo:island 2 461
dbo:manager 1 14721
dbo:assembly 1 12167
dbo:chairman 1 6214
dbo:illustrator 1 2777
dbo:lyrics 1 1825
dbo:maintainedBy 1 1336
dbo:translator 1 1053
dbo:promotion 1 976
dbo:anthem 1 683
dbo:alumni 1 199
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5.2. Results. Considering transitivity, we report the scores
over 0.1 in Table 3, and for symmetry and asymmetry we re-
port scores over 0.01 in Table 4. There were only 2 proper-
ties with a non-zero score for reflexivity: dbo:state (score

Table 3
Properties with score above 0.1 (column neural), according to the ap-
proach presented in Section 4, when considering transitivity axioms.
For comparison, the column baseline reports the scores of the baseline
approach, presented in Subsection 5.3. The last column denotes the
gold standard described in Subsection 6.2: 1 for a transtivie property

and 0 for a non-necessarily transitive property

neural baseline gold

dbo:subregion

dbo:division

dbo:sisterNewspaper

dbo:locatedInArea

dbo:languageFamily

dbo:isPartOfWineRegion

dbo:similar

dbo:isPartOf

dbo:genus

dbo:class

dbo:country

dbo:family

dbo:sisterStation

dbo:presenter

dbo:associate

dbo:series

dbo:order

dbo:sourcePlace

dbo:sourceMountain

dbo:archipelago

0.913 0.739 1.000

0.900 0.945 0.000

0.891 0.637 0.000

0.881 0.982 1.000

0.879 0.771 0.000

0.862 0.776 1.000

0.837 0.468 0.000

0.782 0.720 0.000

0.697 0.826 0.000

0.692 0.828 0.000

0.612 0.617 1.000

0.538 0.479 0.000

0.508 0.620 0.000

0.333 0.573 0.000

0.320 0.288 1.000

0.277 0.290 0.000

0.217 0.381 0.000

0.182 0.456 0.000

0.156 0.456 0.000

0.138 0.300 0.000

0.0

0.2

0.4

0.6

0.8

1.0

Table 4
Properties with score above 0.01 (column neural), according to the ap-
proach presented in Section 4, when considering symmetry and asym-
metry axioms. For comparison, the column baseline reports the scores
of the baseline approach, presented in Subsection 5.3. The last column
denotes the gold standard described in Subsection 6.1: 1 for symmet-

ric, 0 for asymmetric, and .5 for neither

neural baseline gold

dbo:neighboringMunicipality

dbo:sisterStation

dbo:sisterNewspaper

dbo:formerPartner

dbo:currentPartner

dbo:spouse

dbo:similar

dbo:relative

dbo:related

dbo:twinTown

dbo:rival

dbo:hasJunctionWith

dbo:associatedBand

dbo:associate

dbo:routeJunction

dbo:associatedMusicalArtist

dbo:relation

dbo:jointCommunity

dbo:partner

dbo:part

dbo:usingCountry

dbo:relatedMeanOfTransportation

0.959 0.828 1.000

0.906 0.713 1.000

0.798 0.596 1.000

0.737 0.769 1.000

0.719 0.832 1.000

0.681 0.575 1.000

0.324 0.418 1.000

0.230 0.355 1.000

0.177 0.290 1.000

0.148 0.139 1.000

0.127 0.365 0.500

0.125 0.163 0.000

0.106 0.176 0.000

0.096 0.408 1.000

0.095 0.094 1.000

0.081 0.176 0.000

0.063 0.260 1.000

0.037 0.015 0.500

0.036 0.389 1.000

0.024 0.020 0.500

0.012 0.024 0.000

0.011 0.137 1.000

0.0

0.2

0.4

0.6

0.8

1.0

0.004) and dbo:isPartOf (score 0.001). It was not possi-
ble to meaningfully evaluate functional and inverse functional
characteristics, as the used graph does not contain the relevant
owl:sameAs statements. The full results, along with the trained
model and the source code are published at http://doi.org/10.
5281/zenodo.3952397.

5.3. Baseline. To provide a baseline for our method, we pro-
pose a simple counting approach. For a given property p, a
given characteristic, and an RDF graph G, we generate all
triples that are direct logical conclusions from the graph as-
suming that p has the considered characteristic, arriving at a
graph C. The expected conclusions are given by Table 1. Then,
we count the number of triples of C that are present in G and
divide by the cardinality of C, obtaining the final score ξ in the
range [0,1], where 0 means that none of the expected logical
conclusions was present in the graph, while 1 means that all of
them were present. If C is empty, we assume the score to be 0,
as there is no evidence to support the considered axiom:

ξ =




|C∩G|
|C| C �= /0 ,

0 C = /0 .

For transitivity, there are 25 properties with ξ = 1, reported in
Table 5, but it seems they all represent coincidences due to very

Table 5
Properties with the highest baseline score ξ = 1.0 when considering
transitivity. The column |C| reports the size of the corresponding set
C, while the column # triples reports the number of triples with the

considered property in the graph G

property |C| # triples
dbo:twinCountry 13 212
dbo:usedInWar 11 4002
dbo:guest 10 31740
dbo:showJudge 9 2123
dbo:vehicle 6 173
dbo:narrator 5 4809
dbo:militaryUnit 4 12305
dbo:musicalArtist 3 51667
dbo:musicalBand 3 51667
dbo:portrayer 3 5439
dbo:wineRegion 3 309
dbo:sport 2 5201
dbo:editor 2 4914
dbo:lastAppearance 2 1664
dbo:island 2 461
dbo:manager 1 14721
dbo:assembly 1 12167
dbo:chairman 1 6214
dbo:illustrator 1 2777
dbo:lyrics 1 1825
dbo:maintainedBy 1 1336
dbo:translator 1 1053
dbo:promotion 1 976
dbo:anthem 1 683
dbo:alumni 1 199
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small sizes of the set C (at most 13) compared to the number of
triples in G with the considered property. We thus introduced
additional requirement |C| ≥ 100 and report the properties with
top 10 scores in Table 6. Similarly to the results reported in Sub-
section 5.2, considering reflexivity, the highest score assigned
was 0.02 and it was not possible to evaluate functional and in-
verse functional characteristics.

Table 6
Top 10 properties with the highest baseline score when considering
transitivity, requiring |C| ≥ 100. The column neural represent the score
assigned by the approach proposed in Section 4. The last column de-
notes the gold standard described in Subsections 6.2 and 6.3: 1 for a

transtivie property and 0 for a non-necessarily transitive property

6. Discussion

In this section, we establish a gold standard for a subset of the
considered properties, based mostly on annotations (labels and
comments) in the DBpedia ontology, the DBpedia mappings
wiki1 and literature concerning the subject of particular prop-
erties, as well as more general literature related to ontological
properties of some popular constructs.

6.1. Symmetry. We discuss on the case-by-case basis all
properties with a score over 0.01 and report the aggregate re-
sults in Table 4.

First, we argue that there are multiple properties that,
on the basis of their labels and the dictionary meaning
of the words used in them, should be deemed symmetric:
(a) family-related: dbo:spouse, dbo:currentPartner,
dbo:formerPartner, dbo:partner (DBpedia is vastly
incomplete, possibly because of the following guidelines
in Wikipedia: If particularly relevant, or if the partner is
notable; [31]), dbo:relation (always mapped from
relations property of an infobox, described as Names of
siblings or other relatives. [31]); (b) neighbourhood-related:
dbo:neighboringMunicipality, dbo:twinTown
[32, 33], dbo:routeJunction; (c) similarity:
dbo:similar, dbo:relative, dbo:related and

1http://mappings.dbpedia.org/, a dump is available in a git repository https:
//github.com/dbpedia/mappings-tracker.git

dbo:relatedMeanOfTranspion (the corresponding
infobox property is described as: The related field lists similar
vehicles that share considerable componentry with the subject
vehicle. [34]).

Wikipedia defines a sister paper as one of two or more news-
papers which share a common owner [35], and gives a sim-
ilar definition for a sister station [36], we thus mark both
dbo:sisterStation and dbo:sisterNewspaper as
symmetric, assuming that in such cases the definitions in
Wikipedia is what guides Wikipedia editors.

For dbo:associate analysis of the mappings reveals that
it is always mapped from the infobox property alongside, which
is described as For two or more people serving in the same posi-
tion from the same district. (e.g. United-States Senators.) [37].
We find this to sufficiently justify the symmetry of this property.

We also observe that there are numerous properties that are
asymmetric. We stipulate that dbo:associatedBand
(a subproperty of dbo:memberOf), and
dbo:associatedMusicalArtist (a subproperty of
dbo:hasMember) are asymmetric under a reasonable
assumption that an object cannot be a member of itself

The domain of dbo:usingCountry is dbo:currency
and its range is dbo:country. While the DBpedia ontology
does not enable inference that currency and country are disjoint
concepts, it seems to be a reasonable assumption, yielding the
property asymmetric.
dbo:hasJunctionWith is a property with the domain

and range dbo:canal. In the mappings, it is used only for
for the property join in Infobox_canal. After the release
of DBpedia 2016-10, join was renamed to connects_to
[38], and from the presence of to we infer this is an asymmetric
property.
dbo:rival is a very specific property with both domain

and range being dbo:School. However, a more broad look at
the concept of rivalry reveals that rivalry may be defined (...)as a
perceptual categorizing process in which actors identify which
states are sufficiently threatening competitors to qualify as en-
emies. [39]. This, in turn, strongly hints that it may be possible
that rivalry is not symmetric (but is also not asymmetric): while
one side sees the other as a rival, the other side may or may not
sees the first one as a rival.
dbo:jointCommunity is a rarely used property derived

from Samtgemeinde property of infoboxes related to German
and Israel municipalities. The name strongly hints that the prop-
erty is not meant to be symmetric, as one side should (typi-
cally) represent a community consisting of multiple members.
This is also supported by the fact that this is a sub-property of
dul:isPartOf. Without detailed knowledge of the respec-
tive law systems in this regard, it is hard to decide whether this
is asymmetric property.

For dbo:part, mappings and range (dbo:Location)
show that it is geography-related subproperty of
dul:hasPart. Part-of relations are not symmetric, but
also are not necessarily asymmetric, unless they are meant as
proper-part-of [40].

6.2. Transitivity. In Table 3 we report the properties with a
transitivity score of at least 0.1 and compare them with the gold
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standard. Below, we give justifications for the labels in the gold
standard.

We observe that transitivity is frequently considered in the
context of various forms of part of relation. At the first sight,
one may be tempted to assume that part of is a transitive rela-
tion, but this is not necessarily so. Keet and Artale [40] intro-
duce a classification of part of relations exactly for the purpose
of distinguishing between transitive and non-transitive (in the
sense of not being transitive, not being intransitive) variants.
The classification is related to DOLCE [41] and its notion of
endurant and pendurant, the first one roughly corresponding to
entity types and the other one to processes and relations. We
find this rough distinction sufficient for our purposes, we thus
leave it at that, referring the interested reader to the literature.
For our purposes, we use the first two levels of their taxonomy:
• Properties that are transitive:

structural part of between endurant and endurant;
spatial part of between endurant and endurant, but such

that region of the first is a part of of the region of the
second;

involved in between pendurant and pendurant;

• Properties that are non-transitive:

member of between physical or social object and social
object;

constitutes between matter and physical object;
subquantity of between matter and matter;
participates in between endurant and pendurant

First, dbo:isPartOf is a non-transitive property. For the
rest, we begin by discussing properties that can be assigned to
one of the presented classes.

Based on names, domain and ranges we con-
sider the following as spatial part of, and thus claim
them transitive: dbo:subregion, a subproperty
of dul:hasPart, with both its domain and range
dbo:Place; dbo:locatedInArea, a subproperty
of dul:hasLocation with both domain and range
dbo:Place; dbo:isPartOfWineRegion, a sub-
property of dul:hasPart, with both its domain and
range dbo:WineRegion, a subclass of dbo:Place;
dbo:country, a subproperty of dul:hasLocation, with
range dbo:Country and an unspecified domain. This last
case may seem counter-intuitive, so consider the following
example: Abbess End is a hamlet in England (country), which
is also a part of The United Kingdom (also a country), and – by
transitivity – Abbess End is a hamlet in The United Kingdom.

There are also few candidates for transitivity on the
grounds of spatial part of, which must be rejected due
to the incompatibility of domain and range. In particular,
dbo:sourcePlace and dbo:sourceMountain are al-
ways used together to map infobox property source_location
in Infobox_river and Geobox (the latter was removed
from Wikipedia since2). To complicate matters, the range of

2https://en.wikipedia.org/w/index.php?title=Special:Log/delete&page=
Template:Geobox

the first is dbo:PopulatedPlace, whereas for the other it
is dbo:Mountain. While the notion of a source is not sur-
prising for flows of water, it is rather unexpected for a popu-
lated place or a mountain (at least in spatial, and not tempo-
ral, sense). Similarly, dbo:archipelago is a sub-property
of dbo:isPartOf with the domain of dbo:Island and an
unspecified range. However, we expect the range of this prop-
erty to consists of archipelagos, i.e., groups of islands. Thus, we
consider these properties as a non-transitive.
dbo:series is used in contexts such as games, books, tele-

vision series, etc. We believe this is a member of, and thus not
transitive.

Further, there are numerous properties representing
similarity and relatedness: dbo:sisterNewspaper,
dbo:sisterStation, dbo:similar. We believe they
are not transitive, as one can easily imagine context such as
three half-siblings A, B, C such that A and B share a parent
and B and C share the other parent of B, but A and C have no
common parents.

For dbo:associate, based on the discussion in 6.1, we
stipulate that this property is transitive, as it requires same po-
sition and same district to hold.
dbo:division is a subproperty of dul:isPartOf and

is used in context of biological taxonomies (to map infobox
properties subdivisio, divisio and superdivisio of Taxobox),
companies (e.g., divisions of Infobox_company), sports
teams (division of Infobox_sports_team) and Ger-
man settlements (divisions and Gliederung of Infobox_-
German_location). We observe that the usage in the con-
text of sports teams is a clear example of the member of usage,
making the property non-transitive.

The domain of dbo:languageFamily is
dbo:Language and we observe that Ethnologue [42],
an established source of information about languages, intro-
duces a distinction between languages and language families,
even in the cases when there is exactly one language in the
family3. We thus conclude that the domain and range of the
property are disjoint and thus the notion of transitivity is
irrelevant.
dbo:genus, dbo:family and dbo:order is used

strictly in the context of biological taxonomies, where each
level is separate and named differently (genus, family, order,
etc.) [43], so effectively (if not in the DBpedia ontology) the
domain and range of the property are disjoint, making the con-
sidered property non-transitive.

The domain of dbo:class is
dbo:MeanOfTransportation, but in the mappings,
it is used both in the context of means of transportation, as
well as in the context of biological taxonomies. For the second
usage, the discussion for dbo:genus applies, and for the first,
there is a lack of definitive evidence in favor of transitivity, we
thus stipulate that this is not a transitive property.
dbo:presenter has domain of

dbo:TelevisionShow and range of dbo:Person,

3E.g. https://www.ethnologue.com/subgroups/coosan
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standard. Below, we give justifications for the labels in the gold
standard.

We observe that transitivity is frequently considered in the
context of various forms of part of relation. At the first sight,
one may be tempted to assume that part of is a transitive rela-
tion, but this is not necessarily so. Keet and Artale [40] intro-
duce a classification of part of relations exactly for the purpose
of distinguishing between transitive and non-transitive (in the
sense of not being transitive, not being intransitive) variants.
The classification is related to DOLCE [41] and its notion of
endurant and pendurant, the first one roughly corresponding to
entity types and the other one to processes and relations. We
find this rough distinction sufficient for our purposes, we thus
leave it at that, referring the interested reader to the literature.
For our purposes, we use the first two levels of their taxonomy:
• Properties that are transitive:

structural part of between endurant and endurant;
spatial part of between endurant and endurant, but such

that region of the first is a part of of the region of the
second;

involved in between pendurant and pendurant;

• Properties that are non-transitive:

member of between physical or social object and social
object;

constitutes between matter and physical object;
subquantity of between matter and matter;
participates in between endurant and pendurant

First, dbo:isPartOf is a non-transitive property. For the
rest, we begin by discussing properties that can be assigned to
one of the presented classes.

Based on names, domain and ranges we con-
sider the following as spatial part of, and thus claim
them transitive: dbo:subregion, a subproperty
of dul:hasPart, with both its domain and range
dbo:Place; dbo:locatedInArea, a subproperty
of dul:hasLocation with both domain and range
dbo:Place; dbo:isPartOfWineRegion, a sub-
property of dul:hasPart, with both its domain and
range dbo:WineRegion, a subclass of dbo:Place;
dbo:country, a subproperty of dul:hasLocation, with
range dbo:Country and an unspecified domain. This last
case may seem counter-intuitive, so consider the following
example: Abbess End is a hamlet in England (country), which
is also a part of The United Kingdom (also a country), and – by
transitivity – Abbess End is a hamlet in The United Kingdom.

There are also few candidates for transitivity on the
grounds of spatial part of, which must be rejected due
to the incompatibility of domain and range. In particular,
dbo:sourcePlace and dbo:sourceMountain are al-
ways used together to map infobox property source_location
in Infobox_river and Geobox (the latter was removed
from Wikipedia since2). To complicate matters, the range of

2https://en.wikipedia.org/w/index.php?title=Special:Log/delete&page=
Template:Geobox

the first is dbo:PopulatedPlace, whereas for the other it
is dbo:Mountain. While the notion of a source is not sur-
prising for flows of water, it is rather unexpected for a popu-
lated place or a mountain (at least in spatial, and not tempo-
ral, sense). Similarly, dbo:archipelago is a sub-property
of dbo:isPartOf with the domain of dbo:Island and an
unspecified range. However, we expect the range of this prop-
erty to consists of archipelagos, i.e., groups of islands. Thus, we
consider these properties as a non-transitive.
dbo:series is used in contexts such as games, books, tele-

vision series, etc. We believe this is a member of, and thus not
transitive.

Further, there are numerous properties representing
similarity and relatedness: dbo:sisterNewspaper,
dbo:sisterStation, dbo:similar. We believe they
are not transitive, as one can easily imagine context such as
three half-siblings A, B, C such that A and B share a parent
and B and C share the other parent of B, but A and C have no
common parents.

For dbo:associate, based on the discussion in 6.1, we
stipulate that this property is transitive, as it requires same po-
sition and same district to hold.
dbo:division is a subproperty of dul:isPartOf and

is used in context of biological taxonomies (to map infobox
properties subdivisio, divisio and superdivisio of Taxobox),
companies (e.g., divisions of Infobox_company), sports
teams (division of Infobox_sports_team) and Ger-
man settlements (divisions and Gliederung of Infobox_-
German_location). We observe that the usage in the con-
text of sports teams is a clear example of the member of usage,
making the property non-transitive.

The domain of dbo:languageFamily is
dbo:Language and we observe that Ethnologue [42],
an established source of information about languages, intro-
duces a distinction between languages and language families,
even in the cases when there is exactly one language in the
family3. We thus conclude that the domain and range of the
property are disjoint and thus the notion of transitivity is
irrelevant.
dbo:genus, dbo:family and dbo:order is used

strictly in the context of biological taxonomies, where each
level is separate and named differently (genus, family, order,
etc.) [43], so effectively (if not in the DBpedia ontology) the
domain and range of the property are disjoint, making the con-
sidered property non-transitive.

The domain of dbo:class is
dbo:MeanOfTransportation, but in the mappings,
it is used both in the context of means of transportation, as
well as in the context of biological taxonomies. For the second
usage, the discussion for dbo:genus applies, and for the first,
there is a lack of definitive evidence in favor of transitivity, we
thus stipulate that this is not a transitive property.
dbo:presenter has domain of

dbo:TelevisionShow and range of dbo:Person,

3E.g. https://www.ethnologue.com/subgroups/coosan
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which commonly are considered disjoint. There is thus no
reason for making it transitive.

6.3. Comparison with baseline. Comparing the obtained re-
sults, we observe the following. First, for reflexivity, on the con-
sidered dataset, the approach does not matter. One can easily
suppose that this is a general observation, as reflexivity is an
extremely potent characteristic, forcing all individuals in an on-
tology to occur in the considered property, and thus unlikely to
be used. Irreflexivity is, on the other hand, probably a rather
common characteristic. For example, if domain and range of a
property are disjoint, that alone is enough to deduce irreflexiv-
ity of the property, as there cannot be an individual s, such that
(s, p,s) is true and s belongs to both domain and range.

For transitivity, the baseline without additional requirement
on the size of the set C failed, as presented in Table 5. With
the requirement, in the top 10, there still are highly suspicious
results, e.g., properties dbo:genus and dbo:class are non-
transitive, as discussed in the previous section.

There is a glaring difference in scores between the base-
line and the neural network for dbo:state. Analysis of the
dataset reveals that this is due to two spurious assertions in
DBpedia: dbr:Azores dbo:state dbr:Azores and
dbr:Madeira dbo:state dbr:Madeira. As there are
numerous individuals that are in the subject position for triples
of shape ◦ dbo:state dbr:Azores and ◦ dbo:state
dbr:Madeira, these two spurious triples are enough to pro-
duce this disparity.

Transitivity of dbo:starring is a byproduct of nu-
merous triples with this property and the subject equal to
the object. These triples by themselves make no sense, but
they also produce nonsensical chains of reasoning, e.g.,
because dbr:Panaah dbo:starring dbr:Panaah
and dbr:Panaah dbo:starring dbr:Panaah (the
same triple), it follows that dbr:Panaah dbo:starring
dbr:Panaah.

6.4. Comparison with the gold standard. In order to answer
the research question, we must summarize the results presented
in Table 3 and Table 4, which can be seen either as ranking com-
parison or as measuring classification accuracy. The rationale
for treating the reported values as rankings is that one might
expect a score to represent confidence in the presence of consid-
ered characteristics, and thus expect that values ranked higher
according to the score are more likely to have the character-
istic. The approach of comparing rankings requires from the
method the ability to handle ties in a ranking, we thus used
Spearman’s rank correlation coefficient ρ (higher is better).
The correlation for the transitivity scores reported in Table 3
is ρ(neural,gold) = 0.310 and ρ(baseline,gold) = 0.170, and
for the symmetry scores reported in Table 4 ρ(neural,gold) =
0.454 and ρ(baseline,gold) = 0.555.

To measure classification accuracy two considerations must
be made. First, jointly assessing symmetry and asymmetry may
be either considered as a ternary classification problem (sym-
metric/asymmetric/neither) or as two binary problems: sym-
metric vs. not-symmetric and asymmetric vs. not-asymmetric.

Second, the scores from the proposed solutions are on a contin-
uous scale, whereas the gold standard is on a discrete scale and
thus one must either apply a measure capable of dealing with
it or introduce additional hyperparameters as cut-off points to
discretize the scores.

Because there are established measures capable of dealing
with the disparity between continuous and discrete scales and
introducing additional hyperparameters would only cloud the
results further, we concentrate only on using an established
measure of the area under the retriever operating character-
istic curve AUC (higher is better). Unfortunately, it does not
easily generalize to a higher number of classes, we thus split
the ternary classification problem into two binary classification
problems, as described above.

For the transitivity scores reported in Table 3
AUC(neural,gold) = 0.707 and AUC(baseline,gold) = 0.613.
For the symmetry scores reported in Table 4 we introduce two
helper vectors, golds and golda representing the gold labels in
the binary classification problems of, respectively, symmetric
vs not-symmetric and asymmetric vs not-asymmetric:

golds
i =

{
1 goldi = 1
0 goldi ∈ {0,0.5}

golda
i =

{
1 goldi ∈ {1,0.5}
0 goldi = 0

Using these, we were able to compute the AUC scores:
AUC(neural,golds) = 0.790, AUC(baseline,golds) = 0.857,
AUC(neural,golda) = 0.722, AUC(baseline,golda) = 0.764.

Using both approaches for comparison we arrive at the same
conclusion: the approach presented in Section 4 outperforms
the baseline approach when it comes to the task of deciding
on transitivity, while the simpler baseline outperforms the pro-
posed approach in the task of deciding on symmetry and asym-
metry. From this, we infer that the proposed approach is capa-
ble of extracting explanations as ontological axioms and that
in more complex scenarios it has the potential to outperform
baseline solutions.

7. Conclusions and future work

In this paper, we presented an approach to train a neural net-
work and explain its behavior in order to extend an ontology
with property characteristic axioms. The neural network is re-
current and multi-layer, with 5 layers of 200 Gated Recurrent
Units each. The training is conducted in a classification setup,
where the goal of the network is to discriminate between RDF
triples present and absent in the considered RDF graph. The
explanation generation is based on averaging the responses of
the network for the triples that were not presented during train-
ing. The explanations are OWL 2 property characteristic ax-
ioms and the proposed solutions cover all of them. Comparing
the obtained results with the gold standard we observe that the
obtained axioms must be treated only as suggestions for an on-
tology engineer, as DBpedia is at the same time incomplete and
noisy, leading to learning knowledge that may be untrue in a
general way.
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The difference between the generated axioms and a baseline
is the most striking for the most complex characteristic, which
is transitivity, which requires joint consideration of three RDF
triples. The proposed approach is, due to its recurrent nature,
very suitable for such a task. The obtained results hints that
the proposed recurrent architecture could be employed to obtain
axioms in setups requiring considering even more RDF triples
at once, which will be considered in the future work.
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The difference between the generated axioms and a baseline
is the most striking for the most complex characteristic, which
is transitivity, which requires joint consideration of three RDF
triples. The proposed approach is, due to its recurrent nature,
very suitable for such a task. The obtained results hints that
the proposed recurrent architecture could be employed to obtain
axioms in setups requiring considering even more RDF triples
at once, which will be considered in the future work.
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[2] P. Różewski and O. Zaikin, “Integrated mathematical model
of competence-based learning-teaching process”, Bull. Pol. Ac.:
Tech. 63 (1), 245–259 (2015).

[3] O. Zaikin, R. Tadeusiewicz, P. Różewski, L.B. Kofoed, M. Ma-
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