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defects. First of all, they concern the manufacturing accuracy
and obtained geometrical structure of surfaces of major bearing
components, basic parameters of any completed bearing (ra-
dial and axial clearance, frictional moment and rotation accu-
racy), and factors related to auxiliary bearing components (lu-
bricant, cage and seals). The authors search for a model, which
would facilitate predicting vibrations in all manufactured bear-
ings subject to quality control.

Considering that to some extent even the most accurate
model (taking into account many factors) will always depart
from the real conditions, and taking into account the speci�c
character of industrial vibration measurements in rolling bear-
ings (brief measurement of a new bearing without operating de-
fects, examination of an unmounted bearing, sometimes also
without grease), the authors intend to develop a bearing model
based on the principle of multicriteria statistics. Numerous
studies on theoretical modelling of rolling bearing vibrations,
including [10-16] have been reviewed for this purpose. There
are models used for experimental studies; however, they do
not often include all the factors affecting vibrations and typi-
cally do not refer to quality control in industrial plants. More-
over, the available literature occasionally discusses empirical
models [17, 18], although those are incomplete. One can also
�nd comparative studies showing differences in simulations be-
tween two models only [19].

This article is intended to compare several different models
and to show factors which are included in the most recent theo-
retical models. Descriptions provided by the authors facilitate
�nding those factors, which are often omitted. For this pur-
pose, besides a general description of some models, �ve con-
cepts representing different approaches to the problem have
been demonstrated here in detail. The discussed models are
also selected to demonstrate different numbers of degrees of
freedom.

2. Industrial measurement of rolling bearing
vibrations in quality control

Industrial measuring systems for rolling bearing vibrations be-
long to the most critical equipment in production plants. Larger
companies have even tens of devices of this type. Most often,
three devices measuring vibrations are located at the end of
each production line. Two of them are operated continuously
to measure vibrations in all �nished products. Any bearing that
leaves production line is automatically placed in one device,
and after completing the measurement of one bearing side, it is
put in the second one, the other way round. The measurement
automation is less complicated if two bearing sides are mea-
sured at two different stations. Also, time required for a check
becomes shorter. The third device at the production line end
is used for a recheck (manual) of products possibly rejected
by automatic control. Moreover, the laboratories of industrial
companies are equipped with manually operated extra equip-
ment used for thorough bearing checks, testing new solutions
and performing statistical analyses. Figure 1 shows one of these
devices.

Fig. 1. The industrial testing stand used to measure rolling bearing
vibrations: 1 � spindle, 2 � electric motor, 3 � positioning set including

vibration sensor, 4 � pusher, 5 � monitor, 6 � loudspeaker

A spindle (1) driven by an electric motor (2) is the central
element of the testing equipment. The positioning set includ-
ing a vibration sensor (3) is located above the spindle. Axial
load is exerted on the bearing through the pusher (4). Apart
from a display panel or monitor (5) allowing us to read out
the result, the system is also provided with a loudspeaker (6)
for audio monitoring of the received measuring signal. Often,
very experienced factory workers are able to diagnose a bear-
ing defect on the basis of the signal. The methods used to mea-
sure rolling bearing vibrations are based on the internal proce-
dures, which must comply with the of�cial standards [20�22].
According to the measuring principle, the tested rolling bear-
ing is set on a shaft spinning inside the spindle. The spindle
has a multi-purpose seat for shafts adapted to different bearing
types. The rotational speed of the shaft, and thus the inner ring
of the bearing, is precisely de�ned � 1800 rpm. If agreed by
the manufacturer and the buyer, in justi�ed cases the rate of ro-
tation can be altered to 3600 rpm, 900 rpm, or 700 rpm. The
tested bearing requires axial load to ensure the correct mea-
surement of vibrations. The load is applied by way of pushing
the outer ring by a force dependent on a bearing type. Usu-
ally, pushers have adequate adjustment, and are replaceable or
to some extent versatile so as to match the tested bearing size.
Radial vibrations of working and loaded bearing are registered
by an electrodynamic vibration velocity sensor, in direct con-
tact with �xed outer ring. The sensor is mounted in a clamp,
which can move it along two axes. Figure 2 shows the dis-
cussed principle of operation. Minimum measurement duration
should be 0.5 s (for 1800 rpm). The measurement should be
quick enough not to reduce the production output (each manu-
factured bearing undergoes a vibration measurement at the pro-
duction plant, without any exceptions), and slow enough for
readings to stabilize. Changes in the results may arise due to
random factors only. The measurement procedure should also
consider minimizing the effect of the unstable dynamic condi-
tion of a bearing, connected with the beginning of the inter-
action between the bearing balls and raceway, or still insuf�-
ciently spread lubricant. In most cases, production plants check
bearing vibrations with applied target grease. The measurement
of lubricated bearings represents actual behavior of the manu-
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factured bearing during regular service. However, some com-
panies test bearing vibrations before applying grease. In this
case, interacting surfaces are covered with a thin �lm of oil.
Then, it is assumed that if the vibration level in unlubricated
bearings does not exceed a critical value, all the more it will
not exceed it after applying the lubricant, since grease dampens
vibrations.

Fig. 2. Schematic presentation of industrial measurement of rolling
bearing vibrations [23]

3. The development of mathematical models of
rolling bearing vibrations and general review
of the most recent publications

The �rst mathematical model of rolling bearing vibrations was
presented by Sunnersjo in 1978 [24]. Published studies were fo-
cusing on vibrations of bearings with positive slackness, loaded
radially. Self-excited vibrations (occurring independently of the
bearing quality and precision) were analysed. The model had
two degrees of freedom (displacement of inner ring in two per-
pendicular directions). Displacement of vibrations was mod-
elled using contact theory according to Hertz equations, omit-
ting mass and inertia of rolling elements. Generally, the foun-
dations for the models discussed today were developed in the
1980s and 1990s. The essential studies on the discussed topic
are described below.

In 1979, Gupta published a cycle of four articles describ-
ing the dynamics of a rolling bearing motion (determining the
forces and moments generated at rolling contact). The �rst two
studies [25, 26] concern a mathematical description of interac-
tions between rolling components and raceways in roller bear-
ings, whereas the next two [27, 28] contain a description of
mechanical phenomena occurring in ball bearings. Moreover,
these studies also include the effect of lubrication and interac-
tions of rolling elements with the cage. In 1980, Meyer, Ahlgren
and Weichbrodt presented in [29] the method used to predict
vibrations in a ball bearing with imperfections including the
misalignment of rings and wrong ball size. Lagrange equa-
tions were solved for bearing raceway moving in time under
rotation forces of balls. Authors McFadden and Smith mod-
elled vibrations in a ball bearing containing one- (1984) and
multi-point (1985) defects, located on an inner raceway [30,

31]. The signal model is based on a generation of a series
of pulses induced by ball surface impacts with a defect lo-
cated on the raceway. These pulses appear recurrently, depend-
ing on the rotational speed of the inner ring. In 1985, Rahne-
jat and Gohar presented a theoretical analysis of vibrations in
a setup consisting of two bearings supporting a rotating shaft
[32]. In this study, operation of bearings with grease is mod-
elled as a nonlinear system of springs and dampers, and the
analysis includes the case of imbalance or changing structure
of an inner raceway. In 1990, Aini presented the study on the
analysis of motion for precise grinding spindle with rolling
bearings. Ball contact with raceway was shown as nonlinear
springs simulating elastic strain. Additionally, the model ver-
sion was demonstrated, which included lubrication of bear-
ings as well. The model was put to validation, proving good
correlation of both theoretical and empirical results. In 1993,
the same author (with Gohar) presented an extended analy-
sis of this problem [33], and in 1995 (with Rahnejat and Go-
har) demonstrated a wide range of experimental works used
for comparison with the results of previous simulations [34].
Frequently referenced work [35] by Yhland from 1992 demon-
strates the model of a rolling bearing motion considering the
waviness of both raceways and the ball and uneven distribu-
tion of cage pockets. In 1997, Tandodn and Choudhury pro-
posed an analytical model of a bearing with 3 degrees of free-
dom (expanded in 2006). The model was used inter alia to
predict frequencies and amplitudes of vibration components
in rolling bearings (for vibrations resulting from a defect lo-
cated either on an outer raceway, inner raceway, or on one of
the rolling elements [36, 37]. An ordinary ball bearing under
radial and axial load was modelled. The demonstrated model
simulates a spectrum of vibrations that contains peaks with
characteristic frequencies of defects and their harmonics. In
2002, Liew, Feng and Hahn demonstrated four different mod-
els of bearing vibrations [38]. The most versatile model has
5 degrees of freedom and includes the following: loading in-
duced by a centrifugal force of the rolling element, working
angle, or radial play. A bearing model with �ve degrees of
freedom not only contains radial displacement of inner race-
way in two directions, but also axial displacement and rota-
tion around radial axes. In 2003, Sopanen and Mikkola were
the �rst to present the model of a bearing with six degrees
of freedom [39, 40]. Additional sixth degree of freedom of
a rolling bearing (rotation around a bearing axis) is gener-
ated by friction forces. However, an empirical approach has
been applied due to the high complexity of this added equa-
tion. The discussed model includes a lot of factors, inter alia,
basic rolling bearing kinematics, elastic deformation of bear-
ing components, elastohydrodynamic lubrication, waviness and
roughness of working surfaces, or single-point and scattered de-
fects.

The majority of present-day scienti�c articles on mathemati-
cal modelling of rolling bearing vibrations are the continuation
and gradual improvement of the �rst models. Authors around
the world are involved in the discussed issue, and below there
is a review of the most recent scienti�c works from the last few
years.
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Authors of study [41] present a mathematical model of bear-
ing vibrations, derived on the basis of a rotor system analy-
sis. Various defects are simulated, including faults related to
the loading of a bearing, and inner or outer ring defects. Then,
a model veri�cation is shown at the test stand containing a
three-axial vibration acceleration sensor. On the other hand, ar-
ticle [42] presents an analytical model simulating an interac-
tion between rolling elements and a raceway, based on a model
from 1984. This model considers the bearing geometry, relative
sliding forces, and resultant normal and tractive forces. More-
over, the model considers strictly de�ned geometrical defect lo-
cated on the outer raceway. Veri�cation tests were carried out
at two test stands, containing the tested bearings with fault re-
sembling the modelled defect, and vibrations were registered
by an accelerometer installed in the test area. Then, the au-
thors of the other study [43] modelled bearing vibrations us-
ing the HOSTSMO {higher-order super-twisting sliding mode
observation} technique expected to improve prediction accu-
racy for the effects of the operation of a bearing with a speci�c
defect. The model developed in this way was veri�ed at the
test stand containing a vibration acceleration sensor. The tests
included bearings with an outer or inner raceway or ball de-
fects, and bearings without any defects. Article [44] discusses
a numerical model of rolling bearing vibrations embodying the
loading distribution in a bearing, elasticity of individual bear-
ing elements, oil �lm properties and, also, a signal transmis-
sion between the bearing and vibration sensor. The veri�ca-
tion of the diagram with vibrations measured at the test stand
is carried out using many parameters characteristic for rolling
bearings, including arithmetic mean, effective value, peak fac-
tor, shape factor, kurtosis, or impulsivity factor. Spectra of vi-
brations are directly compared, as well. Study [45] proposes a
scheme applicable primarily in the analysis of the impact of
shell rigidity and defect size on vibrational characteristics of
the bearings in a rotor system. The mathematical formula of
the model contains defects on both the inner and outer ring.
The obtained results are compared on the basis of an effective
value derived from the vibration acceleration signal. A more
complex problem is discussed in study [46]. Its authors do not
model point defect anymore, but faults distributed along the
perimeter of both the outer and inner ring. Most often, defects
of this type appear as a result of electro-erosion or propaga-
tion of point defects. The discussed paper contains a compar-
ison of vibration spectrum for a bearing with a natural race-
way defect with the vibration spectrum simulated using a bear-
ing model with defects distributed evenly at speci�c angles
along the perimeter of rings, among other things. An interest-
ing line for further research is outlined in study [47], where
authors focus on the discrepancies between the vibration signal
of a bearing damaged as a result of its prolonged operation (or
time-consuming durability tests), and the signal from a delib-
erately damaged bearing [48] (e.g. using an electric engraver,
by means of drilling, or electro-abrasive treatment). The dis-
cussed algorithm is expected to predict the signal of vibrations
in a rolling bearing damaged naturally on the basis of the signal
of vibrations obtained for the bearing with a deliberately made
defect.

4. Speci�cation of selected latest models of rolling
bearing vibrations

The models presented below are understood as a system of
equations, the number of which depends on the assumed de-
grees of freedom. Due to highly complicated formulas, this pa-
per is limited only to the general formulation of the modelling
of bearing subassemblies and phenomena occurring during its
operation. The analysis shown below concerns �ve different
models considering various factors affecting the vibration level
generated by a rolling bearing. Symbols of unambiguous pa-
rameters, e.g. the mass of the outer ring or the angular position
of the rolling element, have been uni�ed for all models. In other
cases, when the parameter symbol is speci�c for a given model
only, original designation has been left in order to make it easy
to �nd a certain parameter in the reference material.

4.1. Basic model of a ball bearing with four degrees of free-
dom . The �rst of the described models presents a standard
dynamic model of a ball bearing with four degrees of freedom.
Apart from self-excited vibrations derived on the basis of defor-
mations generated as a result of applying Hertz contact theory,
publication [49] from 2016, written by Shi, Su, and Han, in-
cludes in its equations local rectangle-shaped defects located on
an inner or outer raceway, or a ball. In the demonstrated exam-
ple, the contact between the ball and raceway is modelled as a
simple system of spring and damper connected in parallel. This
induces a nonlinear relation between the force and deforma-
tion. The outer raceway is installed on a rigid support, whereas
the inner raceway is stif�y �xed to a rotating shaft. Permanent
radial loading is applied to the shaft. The analyzed model is
shown in Fig. 3.

Fig. 3. Basic model of a rolling bearing with four degrees of freedom
[49]

Four differential equations that form mathematical model of
rolling bearing vibrations are shown by the formulas (1)�(4):

m1 ¤x1 � c1 �x1 � c1 �x2 � k1xx1 � k1xx2 � Fx � (1)

m1 ¤y1 � c1 �y1 � c1 �y2 � k1yy1 � k1yy2 � Fy �Ws � (2)

m2 ¤x2 � �c1 � c2x� �x2 � c1 �x1 � k2xx2 � Fx � (3)

m2 ¤y2 � �c1 � c2y� �y2 � c1 �y1 � k2yy2 � Fy � (4)
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where: m1, m2 are the mass of the inner ring and the shaft �1�
and mass of the outer ring �2�; x1, x2, y1, y2 are the radial dis-
placements in horizontal �x� and vertical �y� direction of the
inner ring �1� and the outer ring �2�; c1, c2x, c2y are damping
coef�cients for the ball �1� and bearing housing in a radial di-
rection: horizontal �2x� and vertical �2y�; k1x, k1y, k2x, k2yare
the radial stiffness coef�cient for the shaft �1� in horizontal �x�
and vertical �y� direction, for housing �2� in horizontal �x� and
vertical �y� direction; Ws denotes the radial load applied to the
shaft; Fx, Fy are components of generated forces in the radial di-
rection: horizontal �x� and vertical �y�, given by the following
formula:

Fx �
z

�
j�1

K
�
�x1 � x2�cos� j�

� �y1 � y2�sin� j �Cr � � j
�3�2 cos� j � (5)

Fy �
z

�
j�1

K
�
�x1 � x2�cos� j�

� �y1 � y2�sin� j �Cr � � j
�3�2 sin� j � (6)

z denotes the number of balls; K is the de�ection factor or con-
stant for elastic deformation of Hertz contact; � j is the angular
position of the ball relative to axis x; Cr denotes internal radial
clearance; � j is the deformation due to a faulty location in an
angular position of the j-th rolling element.

As mentioned above, this model also considers the defect in
a form of a simple rectangle with sharp edges, visible in Fig. 4.

Fig. 4. Modelling of basic defect in a form of a rectangle with sharp
edges: a) defect location on outer raceway, b) defect location on inner

raceway [49]

The inclusion of a single defect on the outer and/or inner
ring raceway in the simulated signal is connected with satis-
fying conditions derived on the basis of geometrical relations
shown in Fig. 4. In the model, element � j is responsible for
an additional motion induced by the defect. This element can
get additional amplitude dr (when ball falls into the defect) or

0 value (in any other case). Depending on the condition to be
satis�ed, for both raceways parameter � j is:

� j �

�
�

�

dr�
���mod

�
� j �

�
�d �

�b

2

�
� 2�

���� �
�b

2
�

0� any other case�
(7)

On the other hand, deformation resulting from the location fault
in an angular position of the ith rolling element � j for the ball is:

� j �

�
���

���

0� j ��k�

dr� 0 � �d � �b � � � �d � �� � �b�� j � k�

0� any other case�

(8)

where: for the inner raceway �d � �st ��d0; for the outer race-
way �d � �d0; and for the rolling element �d � mod��st �
�d0� 2��; �d denotes the angular position of the defect at a
given moment; �b is the angle related to defect width; k is the
number of the ball, on which the defect was modelled; �d0 de-
notes the initial angular position of the defect; �s is the angular
velocity of the shaft; t denotes the time.

The demonstrated dynamic model of a rolling bearing, with
the defect on the outer raceway and/or the inner raceway and/or
the rolling element, can be solved and analyzed, e.g. using the
Runge-Kutta numerical method.

4.2. The model including changing defect topography. The
second model shows the modi�cation of the standard model,
involving inclusion of the changes in the topography of simu-
lated local defects located on the inner and outer raceway. The
dynamic model of a ball bearing from 2014, described by Liu
and Shao [50] has 2 degrees of freedom. They are related to
the displacement of the inner ring with the shaft in two radial
directions perpendicular to each other. The outer ring located
in the housing is considered immovable and non-deformable.
Same as in the case of the model described in 3.1, the work of
the ball with raceways is simulated using a non-linear system
including a spring and a damper, and elastic de�ections are de-
rived from the Hertz theory. The model structure includes the
change in defect topography caused by the ball hitting defect
edge. Cyclic strokes induce plastic deformations, as a result of
which edges of local defects become blunt, changing the sharp
edge into small, smooth, and �at surfaces. It is assumed that
both defect edges change symmetrically. The process involving
defect topography modi�cations is shown in Fig. 5.

Fig. 5. Different types of ball contact with defect edge: a) sharp edge,
b) slightly blunt edge, c) strongly blunt edge [50]
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The change in the local defect topography changes both the
trajectory of the ball running on race, and the nature of contact
between the rolling element and race. In the case of the sound
race, deformations are simulated as ball-ball contact. When the
rolling element hits still an unmodi�ed defect edge, the contact
nature changes into ball-line contact, whereas when the bearing
ball rolls on a blunt edge, elastic deformation is simulated as
ball-plane contact. In the described model, the type of the ball
contact with the defect is being identi�ed on the basis of three
geometrical parameters of the defect: �d is the ratio of defect
length L (defect size in ball motion direction) to defect width
B (defect size in a perpendicular direction to the ball motion
route), �bd is the ratio of the ball diameter to the smaller of de-
fect sizes: d�min�L;B� and � (0 � � � ��2) is the defect edge
cutting angle. This formulation facilitates the simulation of dif-
ferent defect shapes, e.g. point defect or crack. Different defect
shapes and their size designations are demonstrated in Fig. 6.

Fig. 6. Simulation of two types of different defects: a) point defect and
raceway crack, b) crack simulation, c) point defect simulation [50]

The two equations for the described model motion are as fol-
lows:

m1 ¤x1 � c1 �x1 � K
Z

�
j�1

� j�
3�2
j cos� j � Fx � (9)

m1 ¤y1 � c1 �y1 � K
Z

�
j�1

� j�
3�2
j sin� j � Fy � (10)

Total deformation resulting from the contact of j-th ball set at
the angle � j:

� j � x1cos� j � y1 sin� j �Cr � H �� (11)

where: � j denotes the loading zone parameter for loading gen-
erated by j-th rolling element (its value can be either 1 or 0, de-
pending if � j is a positive value, or less or equal to 0). The other
symbols are the same as those described for the �rst model
shown in 3.1. Element H is a time-varying function of forced
displacement caused by simulated defects. Value H depends on
the values of coef�cients �d and �ed , and takes four different
forms, which are a function of the following geometrical pa-
rameters of the model:

H1� H2� H3� H4 � f ��� l� Do� Di� H� B� d� � (12)

where: l denotes the blunt edge surface length; Di is the inner
raceway diameter; Do is the outer raceway diameter; H denotes
the defect depth and d is the ball diameter.

The authors of the publication simulate the vibration acceler-
ation signal by way of solving the demonstrated equations us-
ing the Runge�Kutta fourth-order method with a constant time
step.

4.3. The model including outer ring deformation. The third
analyzed model presents a modi�cation of the standard model,
involving the inclusion of the deformation of the outer ring,
built using �nite elements. Finite elements are of two-node type
and none of them is stif�y blocked. As a result, the outer ring is
fully deformable in radial direction. Tadina and Boltezar are the
authors of model [51] developed in 2011. The model shown in
Fig. 7 has four degrees of freedom, related to the outer ring dis-
placement in two radial directions perpendicular to each other,
the ball motion, and outer ring deformation.

Fig. 7. The model of bearing vibrations considering deformation of an
outer ring consisting of two-node �nite elements [51]

Moreover, the simulation includes the centrifugal force of
balls, sliding between the working surfaces and �exibility of
housing, which can undergo an unsymmetrical deformation. In
the demonstrated model, the ball is modelled as a separate bear-
ing component, which can work both with the inner and outer
raceway. In the two previous models, the ball was simulated
as an interaction between two raceways connected in parallel
by a damper and spring. However, the model does not embody
a whole range of factors, including: lubrication, the ball rota-
tion around own axis, changes in the ball motion path during
operation, temperature changes (change in grease viscosity, ex-
pansion of rolling elements and raceway, and reduced material
strength) as well as the interaction between the basket and other
bearing elements.
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where: � � � j � �x2 � x1�cos� j � �y2 � y1�sin� j; k1, k2 are
the radial �exibility coef�cient for the inner �1� and outer �2�
raceway; �1 j, �2 j are the deformations of the ball � inner ring
�1� and the ball � outer ring �2� contact; � j denotes the the dis-
tance of j-th ball from the outer ring centre in radial direction;
� j is the distance of the ball centre from the inner raceway in
the radial direction; �s denotes the angular position of the in-
ner raceway relative to the outer raceway centre; mb is the ball
mass; � denotes the angular velocity of the shaft; g denotes
the gravitation acceleration; M is the matrix of masses; C is the
damping matrix; K is the rigidity matrix; � denotes the vector
of displacement; Fm is the vector of node forces.

The main purpose of the authors� model was to study the
bearing behaviour during operation at a time-varying rotational
speed (bearing run-down). The demonstrated differential equa-
tions of motion were solved numerically using the modi�ed
Newmark integration method.

4.4. The model including waviness of rings and lubrication.
In the models discussed so far, the raceways had homogeneous
surfaces and time-varying elastic deformations were based on
the sinusoidal function. In 2015, Liu and Shao demonstrated a
bearing model embodying both race surface waviness and work
of a rolling element with a raceway in a lubricating medium
[52]. The model facilitates a simulation of waviness, which is
the same along the entire perimeter, but it may differ on the in-
ner and outer races. As a result of cyclic changes in the raceway
radii of curvature, the nature of the rolling element and race
work undergoes considerable changes. Moreover, the changes
in the raceway radii of curvature generate changes in time of
lubricating oil �lm thickness. The discussed model concerns a
rolling bearing, but it can be also effectively used to predict ball
bearing vibrations.

Figure 8 demonstrates how contact rigidity may change de-
pending on the angular position of the outer ring.

The system of equations consists of two dynamic equations
of a motion, and the degrees of freedom are related to the axial
displacement of the outer ring in two perpendicular directions.
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K� � total �exibility coef�cient for the contact between rolling
element and races (smooth and with waviness). Coef�cient K�

includes all of the following: a total �exibility coef�cient for
the contact between one rolling element and two non-lubricated
smooth races, a total �exibility coef�cient for the contact be-
tween one rolling element and two non-lubricated races charac-

Fig. 8. Diagram of a rolling bearing model that includes raceway sur-
face waviness [52]

terised by certain waviness, a total �exibility coef�cient for the
contact between one rolling element and two lubricated smooth
races, a total �exibility coef�cient for the contact between one
rolling element and two lubricated races characterised by cer-
tain waviness.

All other symbols have already appeared in previous descrip-
tions; however, in the case of a problem formulated in this way,
total deformation resulting from the contact of j-th rolling ele-
ment set at the angle � j relative to the horizontal axis is:

� j � xcos� j � ysin� j �Cr � � j � hi j � ho j � (19)

where: hi j is the central thickness of the �lm between the rolling
element and inner race place of j-th roller, ho j is the central
thickness of the �lm between the rolling element and outer race
in place of j-th roller. Time-varying function driving dislocation
caused by a given case of waviness in place of the j-th rolling
element � j is given by the following formula:
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�ws sin
�

2Lws

�ws

�
� (20)

where: Nw denotes the number of waves, �ws amplitude of s-th
is the wave, Lws denotes the angular position of wave, average
length of s-th wave.

The demonstrated equations are solved using the Runge�
Kutta fourth-order method with constant time step.

4.5. Dynamic model of a damaged bearing considering
changes in the viscosity damping coef�cient. The last of the
analyzed models was presented by Kong, Huang, Jiang, Wang,
and Zhao in 2019. The model predicts the operation of ball
bearings with a localized defect on the outer race and facili-
tates the examination of the impact of the damping variation on
the vibrations generated by the faulty bearing [53].

The damping of vibration in a rolling bearing depends mainly
on the internal clearance, applied force, rotational speed of the
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The demonstrated equations are solved using the Runge�
Kutta fourth-order method with constant time step.

4.5. Dynamic model of a damaged bearing considering
changes in the viscosity damping coef�cient. The last of the
analyzed models was presented by Kong, Huang, Jiang, Wang,
and Zhao in 2019. The model predicts the operation of ball
bearings with a localized defect on the outer race and facili-
tates the examination of the impact of the damping variation on
the vibrations generated by the faulty bearing [53].
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