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Abstract
A �lm stress measurement system applicable for hyperbaric environment was developed to characterize
stress evolution in a physical simulation test of a gas-solid coupling geological disaster. It consists of
�exible �lm pressure sensors, a signal conversion module, and a highly-integrated acquisition box which
can perform synchronous and rapid acquisition of 1 kHz test data. Meanwhile, we adopted a feasible sealing
technology and protection method to improve the survival rate of the sensors and the success rate of the
test, which can ensure the accuracy of the test results. The stress measurement system performed well in
a large-scale simulation test of coal and gas outburst that reproduced the outburst in the laboratory. The stress
evolution of surrounding rock in front of the heading is completely recorded in a successful simulation of
the outburst which is consistent with the previous empirical and theoretical analysis. The experiment veri�es
the feasibility of the stress measurement system as well as the sealing technology, laying a foundation for
the physical simulation test of gas-solid coupled geological disasters.
Keywords: stress measurement system, sealing technology, hyperbaric environment, coal and gas outburst,
gas-solid coupling.
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1. Introduction

In the �elds of underground engineering and safety engineering, many engineering issues
are related to gas-solid coupling. These issues involve interaction between gas and rock mass
which is very complex. Coal and gas outburst is one of the typical gas-solid coupling geological
hazards. A geomechanical model test is an e�ective method to study this kind of issues, but lack
of a monitoring system is the key factor restricting the research [1�4].
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The detection technology used in the model test is very important for the test results. The
sensors used not only need to meet the accuracy requirement, but also small size and good
matching with the measured medium are required, so as to reduce the in�uence of the sensors
themselves on the model test results. The earth pressure box is often used to obtain the value
of internal stress of key positions in the model test. For example, Wang et al. [5] used an earth
pressure box to study and analyze the variation law of stress-displacement of coal seam roof and
explained a series of phenomena of coal seam roof collapse as well as summarized the in�uence
factors of roof activity. Li et al. [6,7] used an earth pressure box to measure stress and explored the
distribution of mining stress and the law of overburden failure in the process of coal seammining.
Zhang et al. [8] used an earth pressure box to measure the stress of gangue �lling materials and
analyze the evolution law of overburden fractures as well as discuss the impact of back�ll mining
on slowdown of overburden settlement. The main parameters of the state-of-art earth pressure
sensors are collected in Table 1.

Table 1. Main parameters of three typical earth pressure sensors.

Item Resistance-type
Vibrating-wire type Vibrating-wire type

(single �lm) (double �lm)

Sensitivity 0.05% F.S 0.1 % F.S 0.05 % F.S

Linearity � 0.5% F.S � 1.5% F.S � 1% F.S

Resolution � 0:05% F.S � 0:2% F.S � 0:05% F.S

Bandwidth 500 Hz 450 Hz 700 Hz

Detection limit 120% F.S 150% F.S 150% F.S

Accuracy � 0.5% F.S � 0.5% F.S � 0.1% F.S

Compensation temperature temperature temperature
techniques self-compensated self-compensated self-compensated

Principle piezoresistive e�ect tension string theory tension string theory

What is more, Tykhan et al. [9] proposed a new type of piezoresistive pressure sensors for
environments with rapidly changing temperature. Bou°a et al. [10] proposed a wirelessly-powered
high-temperature strain measuring probe based on piezoresistive nanocrystalline diamond layers,
but the e�ect of applying an earth pressure box to test the pressure distribution proved unsatis-
factory. The accuracy of test results was a�ected by its large size, too few test points, too much
wiring, and sti�ness greater than that of the measured medium. In addition, the mere existence of
the earth pressure box a�ected the original stress �eld, especially one in the rock and soil around
the pressure box, and changed the original distribution.

Besides earth pressure boxes, �ber grating sensors have been rapidly developed due to their
small size, high sensitivity, being waterproof and resistant to electromagnetic interference as
well as highly sensitive [11�17]. Chang et al. [18] designed and compared three kinds of �ber
Bragg grating earth pressure sensors with di�erent bonding modes. Wang et al. [19] developed
a new type of a �ber Bragg grating earth pressure sensor for structural health monitoring which
also performed temperature monitoring and self-compensation. Correia et al. [20] developed
a �ber Bragg grating pressure sensor which can measure the earth pressure and pore pressure
simultaneously. Hu et al. [21] designed a �ber Bragg grating earth pressure sensor with a hard
center diaphragm as an elastic element. Li et al. [22] designed a �ber Bragg grating earth pressure
sensor based on a double L-beam and applied it to earth pressure monitoring of a dam site. Hong
et al. [23] developed a small soil deformation measurement system based on a �ber Bragg grating
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for underground displacement monitoring. Xu et al. [24] constructed a soft �ber Bragg grating
strain sensor which has the advantage of high precision and a small size and can be used for
monitoring the subsurface deformation of the slope model. Piao et al. [25] used a �ber Bragg
grating to study the deformation characteristics of overburden in the process of coal seam back�ll
mining and analyze the correlation between �lling material and overburden settlement. In most of
these studies, mechanical structures are used to convert the uniform pressure into the axial strain
of a �ber Bragg grating. The sensitivity of the sensor is improved e�ectively, but at the same time
deviation will be introduced, which will a�ect the consistency and stability of the sensor. Also,
the sensor element is precise and fragile, so it cannot be used in hyperbaric gas-solid coupling
model tests.

In addition to the choice of the sensor, the performance of the sealing of the signal wire and
the protection of the sensor converter are the key parameters for data acquisition and the success
rate of the hyperbaric gas-solid coupling model test. There are few previous studies on this, and
the representative research results are as follows. Gao et al. [26] created a sealing sub-system and
used a box to seal the lead, whose thickness was 30 � 35 cm, with two �O�-type sealing rings and
high-strength bolts used for fastening the seal. Zhang et al. sealed the sensor signal wire using
a sealing gasket in an outburst simulation test triggered by instant coal-seam uncovering. These
studies only focused on the seal of signal wire but ignored the protection of the sensor converter
and a simulation test triggered by tunneling under hyperbaric condition has never been reported.

In summary, the response frequency of the existing pressure sensors is low, and the maximum
for a full bridge pressure box is only a few hundred Hz, which cannot meet the needs of data
collection for an instantaneous stress change in an outburst test. The existing pressure sensors are
di�cult to be used in a hyperbaric gas-solid coupling model test due to their volume, sti�ness,
survival rate and pressure resistance. Nor can they meet the requirements of the sealing quality
of the sensor signal wire. Based on this, a �lm stress measurement system and its sealing
technology are proposed. Firstly, the �lm stress measurement system is introduced including the
testing principle and functional characteristics of the sensor, the working principle of the signal
conversion module and the pressure calibration of the sensor. Secondly, a sealing technology
of this system under a high gas pressure environment is independently developed. Finally, its
feasibility is tested in a large-scale coal and gas outburst model test triggered by tunneling under
hyperbaric conditions.

2. The �lm stress measurement system

2.1. Testing principle of the sensor

In this paper, the principle behind the �lm pressure sensor is the piezoresistive e�ect in polysil-
icon. The piezoresistive e�ect was �rst discovered by Lord Kelvin in 1856. It is a phenomenon
of obvious changing of resistance of materials under mechanical stress. When a solid material
is a�ected by a force, the crystal lattice will deform and the carrier will scatter from one energy
valley to another which will change the mobility of the carrier and disturb the average value of
the carrier in the longitudinal and transverse direction and, in result, change the resistivity of the
material.

The �lm pressure sensor is composed of two very thin polyester �lms. The inner surface of the
two �lms is covered with a polysilicon resistance material. When the material is under pressure,
its resistivity changes, and the electrical signal output proportional to the force change can be
obtained through the measurement circuit of the provided signal conversion module.
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2.2. Sensor features

The features of the �lm pressure sensor in this paper are as follows: (1) its thickness is
only 0.1 mm; (2) it is �exible. It can �t the surface of the measured medium tightly had has
a good adaptability; (3) the sensor wiring is small and �ne, which can reduce the disturbance to
the surrounding rock and soil. The physical and dimensional pictures of the sensor are shown
in Fig. 1.

Fig. 1. The physical and dimensional pictures of the sensor.

2.3. Working principle of signal conversion module

The resistance-voltage conversion module is composed of a DC regulated power supply
(VCC), a �lter capacitor, a number of �xed-value resistors and an analog-to-digital converter
(ADC). Through the circuit design and voltage sharing principle as shown in Fig. 2, the relation-
ship between the resistance value of the �lm pressure sensor and the voltage at both ends of the
�xed value resistance can be obtained:

Rx + R1
R1

=
U2
U1

; (1)

where, Rx is the resistance value of the sensor, R1 is the �xed-value resistance, U1 is the voltage
value at both ends of the �xed value resistance, U2 is the supply voltage value of the resistance-
voltage conversion circuit (VCC), V.

Fig. 2. Circuit design and the voltage sharing principle.
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The module realizes the conversion of the resistance signal and voltage signal. When the VCC
is powered with a constant voltage, there is a functional relationship between Rx andU1 as shown
in Eq. (1). The value of Rx can be calculated by measuring U1, and the pressure value of the
sensor can be obtained.

2.4. Pressure-voltage calibration

Pressure is applied on a single �lm pressure sensor with a push-pull machine and its value
changes in the range of 0 � 500 N. Then, di�erent pressure values of �lm pressure sensor and
the output voltage values of the ADC are recorded. Finally, the relationship curve between the
pressure of �lm pressure sensor and the output voltage of the ADC is obtained (Fig. 3).

Fig. 3. Curve between the pressure and the output voltage.

2.5. Main parameters of the signal conversion module

The external dimensions of the conversionmodule are 1:4�3:2 cm (� 1mm), the power supply
is 3:3 � 5 V, the output voltage range is 0 � 5 V, the accuracy of the conversion module is 1%, the
conversion speed is 1 kHz, and interference-resistance is strong. There are corresponding interface
identi�cations, among which the VCC is connected at 3 � 5 V voltage, GND is connected with
a grounding wire, DO is the digital output interface and AO is the analog output interface. The
module can match di�erent models according to di�erent sensor requirements, and the high-low
level output under di�erent pressures can be adjusted through the adjusting knob and the low-level
indicator, as shown in Fig. 4.

Fig. 4. Signal conversion module.
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2.6. Highly-integrated acquisition module

The highly-integrated acquisition box and the supporting acquisition software can be con-
nected with the gas pressure sensor, the temperature tensor, the stress sensor, and other sensors
at the same time, as shown in Fig. 5. LabVIEW is used to compile the acquisition program
to perform real-time synchronous acquisition of signals and visualization of test data. For the
�lm pressure sensor and temperature sensor, the output mV level voltage signal is susceptible
to interference. Therefore, a signal conversion module is needed to amplify the signal from the
millivolt level to the volt level.

Fig. 5. Highly integrated acquisition module.

The key parameters of sensors and acquisition card are given in Table 2.

Table 2. Key parameters of sensors and acquisition card.

Stress sensor
Thickness 0.15 mm

Response time 1 us

Size 32 � 14 mm

Conversion module of the stress sensor Speed 1 kHz

Accuracy � 1% FS

Size 0:15 � 0:25 mm

Temperature sensor Diameter 0.1 mm

Range �20�200�

Size ’ 44 � 21 mm

Conversion module of the temperature sensor Speed 1 kHz

Accuracy � 0.2% FS

Gas pressure sensor
Signal output range 0:5 � 4:5 V

Accuracy � 1.5% FS

Channel number 16

Acquisition card Sampling rate 500 kSa/s

Input resolution 12 bit
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3. Sealing technology in a hyperbaric gas environment

The sealing technology of the whole system includes the sealing of the sensor signal wire led
out of the coal seam, the sealing and protection of the signal conversion module, and the sealing
of the signal wire led out of a reaction apparatus. The overall connection mode and principle
are shown in Fig. 6 and the details of the hyperbaric resistant sealing protection technology are
shown in Fig. 7.

Fig. 6. The overall connection mode and principle.

(a) (b)

(c) (d)

Fig. 7. Details of the hyperbaric resistant sealing protection technology. a) Sealing device for signal conversion module
of �lm sensor. b) Sealing device for signal conversion module of temperature sensor. c) Signal wire arrangement inside

the apparatus. d) Signal wire arrangement outside the apparatus.
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3.1. Sealing technology of sensor signal wire led out coal seam

In the gas-solid coupling test, a good method to lead the sensor signal wire out of the coal
seam and ensure the sealing e�ect is the key to the success of the test. In this paper, the following
technical methods were adopted: a smooth enameled wire without outer insulation was adopted as
the sensor signal wire and it was passed through the L-type pipe shown in Fig. 6, which was sealed
with an epoxy resin sealant. The epoxy resin sealant mentioned in this paper is a two-component
high temperature-resistant adhesive based on epoxy resin which is composed of epoxy resin A
and hardener B mixed in a certain proportion. The ratio of A and B is 2.5:1 by volume. While
being laid in the coal seam, the sensor was buried in a given position. One end of the L-type
pipe was buried in the coal seam and then the coal seam and the L-type pipe was wrapped in
butyl rubber. In the contact part between the L-type pipe and butyl rubber, the thickness was
increased and a softening treatment was conducted to ensure the sealing e�ect. The outer side of
butyl rubber was �lled with rock-like material and the physical and mechanical parameters of the
material could be precisely adjusted bymatching the proportions of rawmaterials: the density was
mainly a�ected by the moulding pressure and binder content, the uniaxial compressive strength
and modulus of elasticity were mainly controlled by the moulding pressure, and the permeability
of the material is mainly a�ected by the binder content. The density ranged from 2.323 g/cm3 to
2.462 g/cm3, the uniaxial compressive strength ranged from 4.16 MPa to 8.8 MPa, the modulus
of elasticity ranged from 350 MPa to 1400 MPa, and the permeability ranged from 1 � 10�3 mD
to 460 � 10�3 mD.

3.2. Sealing and protection of the signal conversion module

As hyperbaric gas in the gas-solid coupling model test can destroy the electronic components
in the signal conversion module, we independently developed a hyperbaric sealing protection
device to isolate the conversion module from the hyperbaric test environment (as shown in
Fig. 6). The speci�c sealing principle is that the conversion module is put in the sealing device
and its two ends are connected with an aviation plug and socket. The connections between the
sensor, the conversion module and the acquisition device are realized through the male and female
aviation plug. The key problem to be solved here is the sealing between the two end covers of the
sealing device and the main body of the device, as well as the sealing of the thread of the aviation
plug and socket. In order to solve this problem, O-rings and bolts are used to fasten and seal the
end cover and the main body of the device, and epoxy resin sealant is poured into the air plug and
the end cover for sealing. Through this sealing method, not only the protection and sealing of the
conversion module are realized, but also the collection of test data is facilitated.

3.3. Sealing of the signal wire led out of the reaction apparatus

In order to solve the sealing problem of the signal wire led out of the reaction apparatus, an
L-type pipe shown in Fig. 6 is designed. The sensor signal wire is passed through the L-type pipe
and epoxy resin sealant is used for sealing. The L-type pipe not only facilitates the �lling of the
sealant, but also ensures the sealing e�ect after the sealant solidi�es. During the test, the L-type
sealing pipe is installed on the reaction frame through a �ange, and an O-ring is used to seal the
space between the �ange and the reaction frame. One end of the sensor signal wire enters the
reaction frame and is connected with the aviation socket on the signal ampli�er sealing device,
and the other end is connected with the information acquisition system outside the apparatus.
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4. Test application

A coal and gas outburst is an extremely complex dynamic disaster in the process of under-
ground coal mining. It is a typical gas-solid coupling problemwhich seriously threatens the safety
of coal production [27,28]. In order to verify the feasibility of the �lm pressure test system and its
hyperbaric resistant sealing protection technology, a model test of coal and gas outburst induced
by roadway excavation with a similar scale of 1/30 was carried out.

4.1. Test prototype and related parameters

The coal and gas outburst in a mine of the HuainanMining Group is selected as the prototype.
Considering the similarity criterion of physical simulation of a coal and gas outburst [29] as
well as its geometric size, strength, rigidity and tightness of the test apparatus, the relevant test
parameters were determined, as shown in Table 3.

Table 3. Test parameters.

Items Values

Coal seam thickness (cm) 15

Coal seam dip (�) 30

Tunnel diameter (mm) 133

Back stress (MPa) 0.39

Lateral stress (MPa) 0.26

Upper stress (MPa) 0.39

Gas pressure (MPa) 1.1

4.2. Test apparatus

The test apparatus contains the coal and gas outburst simulation test instrument developed
by the authors. The apparatus is divided into �ve key units as shown in Fig. 8. Among them,

Fig. 8. Coal and gas outburst simulation test apparatus.
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a sealed counterforce unit can provide the hyperbaric gas environment for the model. The ex-
ternal dimensions of the sealed counterforce unit are 2; 030 mm � 2; 170 mm � 2; 030 mm. The
dimensions of the internal model are 1; 300 mm � 730 mm. From bottom to top, the counterforce
device consists of a �oor structure, a middle annular structure, and a roof structure. Each of
these structures is produced by welding Q345 steel plates. The stress loading unit can faithfully
simulate the ground stress environment. The gas �lling unit can provide the maximum 5 MPa gas
source for the experimental model. The tunnel excavation unit can perform tunnel excavation in
the model. The information acquisition unit can collect the internal physical information of the
model in real time.

4.3. Sensor arrangement

This test focused on the stress �eld and gas �eld on the roof of the tunnel as well as the
stress �eld, gas �eld and temperature �eld of the coal seam. Therefore, �lm pressure sensors, gas
pressure sensors, and temperature sensors were placed on the top of the tunnel and coal seam.
The arrangement of some key sensors is shown in Fig. 9.

(a) (b)

Fig. 9. Arrangement of some key sensors. a) Locations of selected key sensors. b) Sensor placing.

4.4. Test process

The test process mainly includes model making, during which the coal seam space was limited
using a wood form, sensor placing, apparatus unit debugging, geostress loading, �lling the gas
and maintaining pressure in the coal seam, tunnel excavation and multi-physical �eld information
collection, as shown in Fig. 10.

4.5. Results and discussion

A violent coal and gas outburst phenomenon occurred when the tunneling distance reached
49.1 cm with a horizontal distance of 30 mm and a vertical distance of 1.5 cm between the
tunneling face and the coal seam.

The test �nally produced a violent coal and gas outburst after the cutter head had excavated
1.5 cm from the coal seam. The experimental phenomenon is very similar to the original coal and
gas outburst phenomenon as shown in Fig. 11.

With the advance of the tunneling face, the collected geostress of the rock mass in front of the
tunneling face collected by the �lm pressure sensor and the curve change are shown in Fig. 12.
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Fig. 10. The main test processes.

(a) (b)

Fig. 11. Coal and gas outburst phenomenon of the test. a) Photo of the coal and gas outburst. b) Pulverized coal thrown
out during the test.

When the tunneling face is advancing normally, the overburden load of the goaf space transfers
to the front of the tunneling face, making the vertical stress of the coal and rock mass in a certain
range in front of the tunneling face greater than the original vertical stress [30, 31]. Under the
action of support pressure, part of rock mass in the support pressure area (concentrated stress
area) is damaged. After the failure, it continues to bear the pressure its residual strength. The area
where the strength failure has occurred is called the limit equilibrium area of support pressure
(plastic area), as shown in Fig. 13.

In this test, the rock mass is located in the protolith stress area and the concentrated stress
area successively, which is consistent with the theoretical analysis, but there is no distressed area.
The reason is that the strength of the surrounding rock in this test is 4.14 MPa which is far greater
than the stress concentration value of the surrounding rock (1.35 MPa).

For linear elastic surrounding rock, the maximum compressive stress of a circular tunnel in
non-uniform stress �eld appears around the surrounding rock. Because the strength of similar
materials in the surrounding rock in this test is far greater than the vertical stress, it can be
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Fig. 12. Geostress curve in front of the tunneling face.

Fig. 13. Support pressure area in front of the tunneling face.

approximately considered as linear elastic surrounding rock. When the driving face is pushed
to the location of the sensor, the surrounding rock stress at this position reaches the peak value
(1.35 MPa), and the stress distribution law for a circular tunnel close to the tunneling face is
consistent with the theoretical analysis.

In the test, the vertical stress in the original rock stress area is 0.36 MPa, which is the same as
the vertical stress loading value. The peak value of the vertical stress in the stress concentration
area is 1.35 MPa, which is 3.75 times bigger than the original rock stress. According to [32], the
peak value of supporting pressure is 2 � 4 H and the stress distribution in this test is consistent
with it.

In the actual working conditions, during the process of tunnel excavation, the gas in the coal
seam is sealed by the low-permeability roof and �oor rock. At this time, although the roof and
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�oor rock may have a slight gas leakage, the gas pressure in the coal seam remains constant due to
the large amount of gas absorbed by the coal seam. At the same time, the closer the tunnel is, the
closer the air pressure in the surrounding rock is to the atmospheric pressure. This test faithfully
reproduced the above phenomena.

In the process of outburst, the air pressure in the coal seam decreases to atmospheric pressure
after 0.77s. Due to the low permeability of the surrounding rock and the role of lead wire sealing,
the air pressure in the surrounding rock of the tunnel decreases to atmospheric pressure after
34.7s, as shown in Fig. 14. The results reveal the characteristics of gas seepage in the surrounding
rock mass of coal seam, and con�rm the feasibility of the sealing technology again.

Fig. 14. Gas pressure change trend.

5. Conclusions

1. Anew type of a �lm stressmeasurement system is proposed,which can be used in hyperbaric
gas-solid coupling model tests. It consists of a �exible and bendable �lm pressure sensor,
a signal conversion module, a highly integrated acquisition box and supporting acquisition
software, which can perform the synchronous 1 kHz rapid acquisition of stress, air pressure
and temperature signals.

2. A sealing technology and a protection method for precision components applicable for
large-scale gas-solid coupling test are proposed. Its sealing structure and implementation
mode, described here in detail, improve the survival rate of the sensor as well as the success
rate of the test and the accuracy of the results.

3. The whole system is applied in the simulation test of gas-solid coupling of a large-scale coal
and gas outburst triggered by tunneling under loading, gas-�lling, and maintained pressure
conditions. The test results are consistent with the previous empirical and theoretical
analysis, which veri�es the feasibility of the �lm stress measurement system and its sealing
technology.
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