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Abstract. The paper focuses on the development of a novel DSP based high performance speed sensorless control scheme for PWM voltage
source inverter fed induction motor drives. Firstly, two generic torque and 
ux control methods the Field Oriented Control (FOC) and
Direct Torque Control (DTC), are brie
y described. For implementation the sensorless scheme DTC with Space Vector Modulation (DTC-
SVM) has been selected because it eliminates the disadvantages associated with the DTC while keeping the advantages of both FOC and
DTC. Secondly, the simple 
ux vector observer allowing speed sensor elimination is given. The novelty of the presented system lays in
combining the DTC-SVM structure with a simple observer for both torque/
ux and speed sensorless control. Furthermore, the DTC-SVM
structure which operates in speed sensorless and torque control mode is presented. Finally, the description of a 50 kW laboratory drive and
experimental results illustrating properties of the system are given.
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1. Introduction
The converter-fed adjustable speed drives (ASD) with induc-
tion motor (IM) are widely used in industry and transporta-
tion systems. In the last decade, several techniques are de-
veloped which allow for elimination of motion (speed or po-
sition) shaft sensor of IM drives while keeping enough pre-
cision and high dynamic performance. The techniques used
for speed/position elimination are known in the literature as
sensorless or encoderless [1{4]. Among the main advantages
of sensorless controlled drives there are:

� Lower cost,
� Reduced hardware complexity,
� Reduced size of the drive,
� Elimination of the sensor cables,
� Higher noise immunity,
� Lower maintenance requirements,
� Possible operation in aggressive environments,
� Reliable, and user friendly operation.

The basic principles used for speed/position estimation
(observation) can be classi�ed into [1, 3, 4]: speed estima-
tors, model reference adaptive system (MRAS), adaptive ob-
servers, Kalman �lters, rotor slot ripple. All these methods,
except rotor slot ripple, are based on 
ux vector observers for
speed estimation.

In this work the development and investigation of the sim-
ple speed sensorless vector controlled IM drive which can
operate in both torque or speed control modes is presented.
In the �rst part, the paper discusses torque and 
ux control
methods and for practical implementation the DTC with Space

Vector Modulation (DTC-SVM) has been chosen because it
eliminates the traditional DTC disadvantages while keeping
the advantages of both classical FOC and DTC schemes. Fur-
ther, the simple 
ux vector observer allowing speed sensor
elimination is presented. The novelty of the presented sys-
tem consists in combining the universal DTC-SVM structure
with a simple observer for both torque/
ux and speed sensor-
less control. Finally, the description of the 50 kW laboratory
drive system with DSP based control and estimation as well
as experimental results illustrating properties of the developed
system are given.

2. Control schemes
2.1. Complex space vector based equation of induction
motor (IM). Mathematical description of the three-phase IM
is based on complex space vectors, which are de�ned in
the coordinate system rotating with the synchronous angu-
lar speed 
s. In absolute-units and real-time representation
the following equations describe a behaviour of the idealized
cage-rotor IM [2{5]:

Vs = RsIs +
d	s

dt
+ j
K	s; (1)

0 = RrIr +
d	s

dt
+ j(
K � pb
m)	r; (2)

	s = LsIs + LMIr; (3)

	r = LrIr + LMIs; (4)

d
m

dt
=

1
J

(Te � TL): (5)
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The electromagnetic torque Te can be expressed by the
following formula:

Te = pb
3
2

Im(	s � Is); (6)

where Ir { rotor current space vector, Is { stator current space
vector, J { moment of inertia, LM { main, magnetizing induc-
tance, Ls { stator winding self-inductance, Lr { rotor wind-
ing self-inductance, Te { electromagnetic torque, TL { load
torque, pb { number of pole pairs, Rr { rotor phase windings
resistance, Rs { stator phase windings resistance, Vs { stator
voltage space vector, 	s { vector of the stator 
ux linkage,
	r { vector of the rotor 
ux linkage, 
K { angular speed of
the coordinate system, 
m { angular speed of the IM shaft.

2.2. General block scheme of speed controlled IM drive.
The general block scheme of high performance speed con-
trolled induction motor drive is shown in Fig. 1. The core of
the scheme are inner 
ux and torque control loops with the
estimator block which can be implemented in di�erent ways,
whereas the outer speed control loop is rather uni�ed and gen-
erates command values for torque Tc and 
ux j	jc (via Flux
program block) controllers. The speed feedback signal can be
measured by a mechanical motion (speed/position) sensor 
m
or calculated in the estimator b
m creating possibility of the
motion sensorless operation.

Fig. 1. General block scheme of speed controlled induction motor
drive

2.3. Selection of torque and 
ux control methods. Sever-
al basic Torque Control (TC) methods have been developed
in the last decades [7]. Not all of them have found wide in-
dustrial applications. Therefore, we present only most popular
strategies used commercially.

Field Oriented Control (FOC). The proposed in 1970-ties by
Hasse [8] and Blaschke [9] FOC method is based on an anal-
ogy to the DC brush motor. In this motor, owing to separate
exciting and armature windings, 
ux is controlled by exciting
current and torque is controlled independently by adjusting the
armature current. So, the 
ux and torque currents are elec-
trically and magnetically separated. Contrarily, the cage-rotor
IM has only a three-phase winding in the stator, and the stator

current vector, Is, is used for both 
ux and torque control. So,
exciting and armature current are coupled (not separated) in
the stator current vector and cannot be controlled separately.
The decoupling can be achieved by the decomposition of the
instantaneous stator current vector, Is, into two components:

ux { producing current, isd, and torque-producing current,
isq, in the rotor-
ux-oriented coordinates (R-FOC) dq (see
vector diagram in Fig. 2). In this way, the control of the IM
becomes identical with a separately excited DC brush motor
and can be implemented using a current controlled PWM in-
verter with linear PI controllers and voltage SVM (see block
scheme in Fig. 2). The core of the FOC scheme are coor-
dinate transformation blocks which allow calculation of �eld
oriented current components isd, isq by using ��/dq transfor-
mation, and reference voltage vector components vs�c, vs�c
by using dq/�� transformation. So, in the FOC scheme torque
and 
ux are controlled indirectly by �eld oriented current vec-
tor components.

Fig. 2. Vector diagram and block scheme of rotor FOC. Torque and

ux are controlled indirectly via torque current isq and 
ux current

isd control loops

Switching Table based { DTC Scheme (ST-DTC). The
block diagram of the ST-DTC scheme proposed by Takahashi
and Noguchi [10] is shown in Fig. 3. The stator 
ux magni-
tude j	jsc and the motor torque Tc are the command signals
which are compared with the estimated

��� b	
���
s

and bTe values,
respectively. The digitized 
ux and torque errors generated
by the hysteresis controllers d	, dT and the position sector
N(
s) of the stator 
ux vector obtained from the angular po-
sition 
s = arctg(	s�=	s�) selects the appropriate voltage
vector from the switching selection table. Thus, pulses SA,
SB , SC for control the inverter power switches are generated
from the vector selection table.

The characteristic features of the ST-DTC scheme of Fig. 3
include:

� Sinusoidal stator 
ux and current waveforms with harmon-
ic content determined by the 
ux and torque controller
hysteresis tolerance bands,
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� Excellent torque dynamics (depending on voltage reserve),
� Flux and torque hysteresis bands determine the inverter

switching frequency, which varies with the synchronous
speed and load changes.

Compared to the conventional FOC (Fig. 2), the DTC has
the following features:

� Simple structure,
� There is no current control loops; hence, the current is not

regulated directly;
� Coordinate transformation is not required,
� There is no separate voltage pulse width modulator (PWM),
� Accurate stator 
ux vector and torque estimation is re-

quired.

Fig. 3. Vector diagram and block scheme of Switching Table based
DTC. Torque and 
ux are controlled directly by selection of appro-
priate forward/backward active inverter voltage vector (V1 or V6) and
stops by selection zero voltage vector V0. Stator 
ux vector moves

on circular path

Direct Torque Control with Space Vector Modulation
(DTC-SVM). Many modi�cations of the classical ST-DTC
scheme aimed at improving starting, very low speed oper-
ation, torque ripple reduction, overload conditions, variable
switching frequency functioning, and noise level attenuation
have been proposed during last decade [11]. One of the so-
lutions is the DTC-SVM with closed-loop torque and 
ux
control operating in Cartesian stator 
ux coordinates (Fig. 4)

[1, 6, 11]. The output of the PI 
ux and torque controllers is
interpreted as the reference stator voltage component, v	c and
vT c, in stator 
ux oriented (S-FOC) (dq) coordinates. These
DC voltage commands are then transformed into stationary
coordinates (��), and the commanded values, vs�c and vs�c,
are delivered to the SVM block. Note that this scheme can be
seen as simpli�ed S-FOC without current control loops [12]
or as classical ST-DTC scheme (see [10]) in which switching
table is replaced by modulator (SVM) and hysteresis torque
and 
ux controllers are replaced by linear PI [1, 6, 13]. So, in
the DTC-SVM scheme torque and 
ux are controlled directly
in closed loops, and therefore an accurate estimation of motor

ux and torque is necessary. Di�erently from the nonlinear
DTC scheme where signals are processed on instantaneous
values, in the linear DTC-SVM scheme, the linear (PI) con-
trollers operate on values averaged over the sampling period.
Therefore, the sampling frequency can be reduced from about
40 kHz required in nonlinear DTC, to 2{5 kHz in linear DTC-
SVM scheme. Also, operation at constant switching frequency
improves considerably the drive performance in terms of re-
duced torque and 
ux pulsations, reliable start-up and low
speed operation.

Fig. 4. Vector diagram and block scheme of the implemented DTC-
SVM. Torque and 
ux are controlled directly via stator voltage vector

components vMc and v	c

Table 1 summarizes features of described torque and 
ux
control methods. It can be seen that DTC-SVM is a combina-
tion of DTC and FOC which eliminates basic disadvantages
while keeping main advantages of both methods. Therefore,
the DTC-SVM scheme has been selected for implementation
of speed sensorless IM drive.
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Table 1
Comparison of control methods

FOC DTC DTC-SVM

Advantages

? PWM Modulator

? Constant switching frequency

? Unipolar inverter output voltage

? Low switching losses

? Low sampling frequency

? Current control loops are required

X Structure independent of rotor pa-
rameters, universal for IM and
PMSM

X Simple implementation of sensor-
less operation

X No coordinate transformation

X No current control loops

X Structure independent of rotor pa-
rameters, universal for IM and
PMSM

X Simple implementation of sensor-
less operation

X No coordinate transformation

X No current control loops

? PWM Modulator
Constant switching frequency

? Unipolar inverter output voltage

? Low switching losses
Low sampling frequency

Disadvantages

� Coordinate transformation are re-
quired

� Multi-loop control

� Control structure depended on ro-
tor parameters

� No PWM modulator

� Bipolar inverter output voltage
(higher switching losses)

� Variable switching frequency

� High switching losses

� High sampling frequency

3. Flux vector and angular speed estimation
Implementation of any high performance drive system re-
quires a high accuracy estimation of the actual stator or/and
rotor 
ux vector (magnitude and position) and electromag-
netic torque. Once the 
ux vector is accurately estimated,
the torque estimation is performed easily as a cross product
of the 
ux and measured stator current vectors. Also, there
is a strong trend to avoid AC voltage sensors and mechan-
ical motion (speed/position) sensors because it reduces cost
and improves reliability and functionality of the drive system.
A good review of IM speed sensorless control schemes is
presented in [4, 12, 14].

3.1. Flux Vector Estimation. To avoid the use of 
ux sen-
sors or measuring coils in the IM, methods of indirect 
ux
vector generation have been developed, known as 
ux models
or 
ux estimators. These are models of IM equations which
are excited by appropriate easily measurable quantities, such
as stator voltages and/or currents (Vs, Is), angular shaft speed
(
m) or position angle (
m). There are many types of 
ux
vector models, which usually are classi�ed in terms of the in-
put signals used [3{5]. Such models generate the stator or/and
rotor 
ux vector which, in an ideal case, rotates synchronous-
ly with the IM magnetic �eld. Because the IM parameters
very often are known only roughly, and change with operating
point and temperature, therefore an error appears between the
actual IM 
ux and that estimated in the used model. The er-
ror depends on: model variants, parameter deviation between
IM and model, accuracy of input signal measurement, motor
point of operation. To minimize the sensitivity of 
ux mod-
els to motor parameters variation, use is made of the model
adaptive reference systems (MARS) and the observer tech-
nique [15, 16]. Also, sliding mode approach for robust 
ux
estimation has been proposed [17].

In this work a simple stator 
ux vector observer operat-
ing without speed/position signal has been implemented. The
observer equations (7){(10) are derived from the IM space
vector Eqs. (1){(4), and are expressed as [18, 19]:

d b	I
s

dt
=

�
� b	I

s +
LM

Lr
b	r

�
Rs

�Ls
+ Vs � K

�
Is � bIs

�
; (7)

d b	II
s

dt
= Vs � RsIs; (8)

b	r =
�

b	II
s � �LsIs

� Lr

LM
; (9)

bIs =
�

b	I
s �

LM

Lr
b	r

�
=�Ls: (10)

The correction term K(Is � Is) existing in the observer
equation (7) is calculated as an error between the currents:
measured Is and estimated bIs in equation (10). This error
term is multiplied by gain factor K allowing compensation
of a drift and parameter changes. This K factor was tuned
according to a discussion conducted in [19]. The rotor 
ux
vector is calculated using the equation (9).

3.2. Speed estimation. Estimated rotor 
ux vector 	r and
measured stator currents, allow to calculate the IM mechanical
angular speed as:

b
r = b
s �
LM

Tr

b	r�is� � b	r�is���� b	r

���
2 ; (11)

where Tr { rotor time constant, is� and is� { current vector
components in the stationary � � � coordinates.

The block diagram of the implemented stator 
ux vec-
tor and angular speed estimation according to Eqs. (7){(10)
and (11) is shown in Fig. 5.
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Fig. 5. Block diagram of 
ux observer and speed calculation struc-
ture

4. Description of the laboratory drive system
The laboratory setup consists of two identical 50 kW induc-
tion motors each supplied by back-to-back AC-DC-AC volt-
age source power converters (Fig. 6). So, the converter system
allows for motor and generator mode of operation. The pa-
rameter speci�cation of the IM and converters are given in
Table 2.

Fig. 6. Block scheme of laboratory setup

Table 2
Laboratory setup speci�cation

IM type STDA 200LU
PN 50 kW Rs 64.5 m

VN 3 � 380 Rr 46.3 m

IN 88 A Ls 25.217 mH
fN 65 Hz Lr 25.137 mH
TeN 249 Nm LM 24.75 mH

N 1917 rpm J 10 kg�m2

Power converter AC/DC and DC/AC
PN 55 kW
IN 98 A
VN 3 � 400 V 50 Hz

fimp 4 kHz

The proposed DTC-SVM scheme was implemented in a
dSpace 1103 platform and some auxiliary circuits were used.

The conditioning interface includes: conditioning current sig-
nal from LEM sensors to voltage in appropriate range for
dSpace card, over current and over voltage protection, and
also �bre optics link for IGBT power transistors.

5. Real-time implementation of control
and estimation algorithms

The whole control and estimation algorithm have been im-
plemented in C language using ControlDesk software provid-
ed by dSpace [20, 21]. The algorithm structure is shown in
Fig. 7. The main parts are: estimation and DTC-SVM block.
The estimation block contains Eqs. (7){(11) and Fourth-Order
Runge-Kuta Method (RK4). The RK4 integration method re-
quires large amount of calculations, more than e.g. the Euler
method, but it is more precise, giving higher stability of the
estimator. The DTC-SVM block contains a control structure
consisting of linear PI regulators and a space vector modula-
tor.

Fig. 7. Block scheme of the implemented estimation and DTC-SVM
algorithm

The control action of the whole system is synchronized
with the SVM-generation and executed with sampling time
250 �s equal to the inverter switching time.

6. Experimental results
The presented algorithm has been investigated experimentally
in steady states and dynamic operation for di�erent IM speeds
and loads.

Steady state performances. At �rst, the accuracy of the speed
estimation in region of the reference speeds 10{1100 rpm, and
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load torque of 100 Nm and 200 Nm have been investigated
and results are summarized in Table 3. As it can be seen, the
speed error is within the range of 2.6{3.76 rpm and for the
load torque 200 Nm is approximately two times higher than
for 100 Nm.

Table 3
Speed estimation errors for di�erent speed and load torque values

Tload

100 Nm 200 Nm

m [rpm] �
m [rpm] �
m [rpm]

1100 3.76 7.7
700 3.6 7.4
300 3.6 7.2
100 3.4 6.8
50 3.3 5.7
40 3 5.7
30 2.6 5.4
15 2.7 5.5
10 2.7 5.3

Secondly, the operation of the IM speed sensorless drive
in steady state at speed 1100 rpm and load torque 200 Nm
has been illustrated in oscillograms of Fig. 8.

Fig. 8. Steady state operation for 1100 rpm speed and 200 Nm load
torque ( b
m { estimated speed, bTe { estimated torque, isa { phase

current)

Dynamic performances. Some selected results of dynamic
tests are presented in the oscillograms of Figs. 9{12. The ex-
cellent torque tracking performance in torque control mode
(open speed loop) is shown in Fig. 9. Similarly, in Fig. 10
speed reversal under torque control mode �150 Nm is shown.

The speed tracking performances are presented in Fig. 11
for speed reference changes: 50 rpm { 900 rpm { 50 rpm.
As it can be seen the averaged speed error stays within the
range of 5 rpm during the transients (acceleration and de-
acceleration) and around zero for a steady state operation at
speed 900 rpm.

Fig. 9. Operation in torque control mode: torque reference changes
� 100 Nm ( b
m { estimated speed, bTe { estimated torque, isa { phase

current)

Fig. 10. Speed reversal for torque changes � 150 Nm ( b
m { es-
timated speed, bTe { estimated torque, isa { phase current, b	s� {

estimated stator 
ux)

Fig. 11. Speed tracking performance for reference changes 50{
900{50 rpm (
m { speed from a sensor, b
m { estimated speed,

�
m = 
m � b
m)
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Fig. 12. Response of the speed control loop to step change of the
load torque from 0 Nm to 200 Nm, for 400 rpm reference speed
( b
m { estimated speed, bTe { estimated torque, isa { phase current)

Finally, the performance of the speed stabilization loop
under step change of the load torque: 0{200 Nm { 0 is pre-
sented in Fig. 12. Note that electromagnetic torque and stator
phase current change very fast without any oscillations.

7. Conclusions
In this paper a simple algorithm for fast stator 
ux and speed
estimation is presented and implemented in 50 kW PWM in-
verter fed-induction motor (IM) drive. The speed sensorless
drive operates in direct torque control with the space vec-
tor modulation (DTC-SVM) scheme presented in Fig. 4. The

ux vector observer is based on a stator voltage equation and
simple algebraic 
ux-current equations without speed/position
signals. In spite of simplicity, the drive can operate in torque
or speed control modes, and guarantees a proper dynamic
performance and the moderate speed estimation accuracy in
steady states.
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