Applied sciences

Archives of Environmental Protection


Archives of Environmental Protection | 2016 | vol. 42 | No 2 |

Download PDF Download RIS Download Bibtex


In the present study the adsorption of Reactive Blue 19 dye on the hydroxyapatite (HAp) nanopowders was investigated. The batch adsorption experiments were performed by monitoring the adsorbent dosage, contact time, dye solution concentration, pH and temperature. At pH 3 and 20°C, high dye removal rates of about 95.58% and 86.95% for the uncalcined and calcined nanohydroxyapatites, respectively, were obtained. The kinetic studies indicated the dye adsorption onto nanohydroxyapatite samples to follow a pseudo-second order model. The Langmuir isotherm was found to be the best to represent the equilibrium with experimental data. The maximum adsorption capacity of uncalcined and calcined nanohydroxyapatite samples has been found to be 90.09 mg/g and 74.97 mg/g, respectively.

Go to article

Authors and Affiliations

Gabriela Ciobanu
Simona Barna
Maria Harja
Download PDF Download RIS Download Bibtex


A ceria loaded carbon nanotubes (CeO2/CNTs) nanocomposites photocatalyst was prepared by chemical precipitation, and the preparation conditions were optimized using an orthogonal experiment method. HR-TEM, XRD, UV-Vis/DRS, TGA and XPS were used to characterize the photocatalyst. Nitrogen adsorption-desorption was employed to determine the BET specific surface area. The results indicated that the photocatalyst has no obvious impurities. CeO2 was dispersed on the carbon nanotubes with a good loading effect and high loading efficiency without agglomeration. The catalyst exhibits a strong ability to absorb light in the ultraviolet region and some ability to absorb light in the visible light region. The CeO2/CNTs nanocomposites photocatalyst was used to degrade azo dye Acid Orange 7 (40 mg/L). The optical decolorization rate was 66.58% after xenon lamp irradiation for 4 h, which is better than that of commercial CeO2 (43.13%). The results suggested that CeO2 loading on CNTs not only enhanced the optical decolorization rate but also accelerated the separation of CeO2/CNTs and water.

Go to article

Authors and Affiliations

Tao Wen
Yu-bin Tang
Fang-yan Chen
Bing-yu Mo
Download PDF Download RIS Download Bibtex


The article presents a method of designing single-chamber rectangular detention reservoirs based on nomographs connecting the parameters and the shape of the inflow with the reservoir hydrograph (triangular, described by the power function and described by the gamma distribution) as well as the hydraulic characteristics of the accumulation chamber and the orifice. The preparation of nomographs involved using the SWMM (Storm Water Management Model) program with the application of numerical calculations’ results of a differential equation for the stormwater volume balance. The performed analyses confirm a high level of similarity between the results of calculating the reservoir volume obtained by using the above mentioned program and using the developed nomographs. The examples of calculations presented in the paper confirm the application aspects of the discussed method of designing the detention reservoir. Moreover, based on the conducted analyses it was concluded that the inflow hydrograph described by the gamma distribution has the greatest impact on the reservoir’s storage volume, whereas the hydrograph whose shape in the rise and recession phases is described by the power function has the smallest effect.

Go to article

Authors and Affiliations

Bartosz Szeląg
Maciej Mrowiec
Download PDF Download RIS Download Bibtex


The paper presents the results of studies on the influence of the 2010 Vistula flood on the humification process in the bottom sediments of the Goczałkowice Reservoir in southern Poland. Due to its location in the vicinity of farmlands, forests and urbanized areas, the Goczałkowice Reservoir is characterized by amplified and intense humification processes within its sediments. The studies were focused on the determining the influence of the flood wave containing organic and inorganic suspensions on these processes. Humic acids were analyzed using two spectroscopic methods: Electron Paramagnetic Resonance (EPR) and Fourier Transform Infrared Spectroscopy (FT-IR). Application of these methods allowed to determine the values of free radicals and of the g-factor, which are indicators of oxidation, aromatization and maturation of humic acids during the humification process, as well as the value of the 1650/1720 ratio, reflecting the dissociation of the COOH group to COO− and the formation of complexes of transitional metals with humic acids during the humification process.

Go to article

Authors and Affiliations

Karolina Czerwieńska
Waldemar Szendera
Waldemar Chmielewski
Download PDF Download RIS Download Bibtex


This research was conducted to study the adsorption of ammonium ions onto pumice as a natural and low-cost adsorbent. The physico-chemical properties of the pumice granular were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Modeling and optimization of a NH4+ sorption process was accomplished by varying four independent parameters (pumice dosage, initial ammonium ion concentration, mixing rate and contact time) using a central composite design (CCD) under response surface methodology (RSM). The optimum conditions for maximum removal of NH4+ (70.3%) were found to be 100 g, 20 mg/l, 300 rpm and 180 min, for pumice dosage, initial NH4+ ion concentration, mixing rate and contact time. It was found that the NH4+ adsorption on the pumice granular was dependent on adsorbent dosage and initial ammonium ion concentration. NH4+ was increased due to decrease the initial concentration of NH4 and increase the contact time, mixing rate and amount of adsorbent.

Go to article

Authors and Affiliations

Masoud Moradi
Mehdi Fazlzadehdavil
Meghdad Pirsaheb
Yadollah Mansouri
Touba Khosravi
Kiomars Sharafi
Download PDF Download RIS Download Bibtex


Nutrient pollution such as nitrate (NO3−) can cause water quality degradation in rivers used as a source of drinking water. This situation raises the question of how the nutrients have moved depending on many factors such as land use and anthropogenic sources. Researchers developed several nutrient export coefficient models depending on the aforementioned factors. To this purpose, statistical data including a number of factors such as historical water quality and land use data for the Melen Watershed were used. Nitrate export coefficients are estimates of the total load or mass of nitrate (NO3−) exported from a watershed standardized to unit area and unit time (e.g. kg/km2/day). In this study, nitrate export coefficients for the Melen Watershed were determined using the model that covers the Frequentist and Bayesian approaches. River retention coefficient was determined and introduced into the model as an important variable.

Go to article

Authors and Affiliations

Muhammed Ernur Akiner
Atilla Akkoyunlu
Download PDF Download RIS Download Bibtex


Heavy metal pollutants in the leachate of waste landfill are a potential threat to the environment. In this study, the feasibility of using municipal sewage sludge as barrier material for the containment of heavy metal pollutants from solid waste landfills was evaluated by compaction test and hydraulic conductivity test concerning compaction property, impermeability and heavy metal retardation. Results of the compaction test showed that the maximum dry density of 0.79 g·cm−3 was achieved at the optimum water content of about 60%. The hydraulic conductivities of compacted sewage sludge permeated with synthetic heavy metal solutions were in the range of 1.3×10−8 – 6.2×10−9 cm·s−1, less than 1.0 ×10−7cm·s−1 recommended by regulations for barrier materials. Chemical analyses on the effluent from the hydraulic conductivity tests indicated that the two target heavy metals, Zn and Cd in the permeants were all retarded by compacted sewage sludge, which might be attributed to the precipitation and adsorption of heavy metal ions. The results of this study suggest that specially prepared material from sewage sludge could be used as a barrier for waste landfills for its low permeability and strong retardation to heavy metal pollutants.

Go to article

Authors and Affiliations

Huyuan Zhang
Bo Yang
Guangwei Zhang
Xuechao Zhang
Download PDF Download RIS Download Bibtex


The aim of the study was to analyze and assess the possibility of using a two-stage filtration system with ceramic membranes: a 3-tube module with 1.0 kDa cut-off (1st stage) and a one-tube module with 0.45 kDa cut-off (2nd stage) for treating effluent water from a juvenile African catfish aquaculture. The study revealed that during the 1st filtration stage of the effluent water, the highest degrees of retention were obtained with respect to: suspended solids SS (rejection coefficient RI=100%), turbidity (RI=99.40%), total iron (RI=89.20%), BOD5 (RI=76.0%), nitrite nitrogen (RI=62.30%), and CODCr (RI=41.74%). The 2nd filtration stage resulted in a lower reduction degree of the tested indicators in comparison to the 1st filtration stage. At the 2nd stage, the highest values of the rejection coefficient were noted in for the total iron content (RIV=100%), CODCr (RIV=59.52%; RV=64.28%, RVI=63.49%) and turbidity (RIV and RV = 45.0%, RVI=50.0%). The obtained results indicate that ceramic membranes (with 1.0 and 0.45 kDa cut-offs) may be used in recirculation aquaculture systems as one of the stages of effluent water treatment.

Go to article

Authors and Affiliations

Małgorzata Bonisławska
Arkadiusz Nędzarek
Arkadiusz Drost
Agnieszka Rybczyk
Agnieszka Tórz
Download PDF Download RIS Download Bibtex


Compounds present in oil sludge such as polycyclic aromatic hydrocarbons (PAHs) are known to be cytotoxic, mutagenic and potentially carcinogenic. Microorganisms including bacteria and fungi have been reported to degrade oil sludge components to innocuous compounds such as carbon dioxide, water and salts. In the present study, we isolated different bacteria with PAH-degrading capabilities from compost prepared from oil sludge and animal manures. These bacteria were isolated on a mineral base medium and mineral salt agar plates. A total of 31 morphologically distinct isolates were carefully selected from 5 different compost treatments for identification using polymerase chain reaction (PCR) of the 16S rRNA gene with specific primers (universal forward 16S-P1 PCR and reverse 16S-P2 PCR). The amplicons were sequenced and sequences were compared with the known nucleotides from the GenBank. The phylogenetic analyses of the isolates showed that they belong to 3 different clades; Firmicutes, Proteobacteria and Actinobacteria. These bacteria identified were closely related to the genera Bacillus, Arthrobacter, Staphylococcus, Brevibacterium, Variovorax, Paenibacillus, Ralstonia and Geobacillus. The results showed that Bacillus species were predominant in all composts. Based on the results of the degradation of the PAHs in the composts and results of previous studies on bacterial degradation of hydrocarbons in oil, the characteristics of these bacterial isolates suggests that they may be responsible for the breakdown of PAHs of different molecular weights in the composts. Thus, they may be potentially useful for bioremediation of oil sludge during compost bioremediation.

Go to article

Authors and Affiliations

Onyedikachi Ubani
Harrison Ifeanyichukwu Atagana
Mapitsi Silvester Thantsha
Adeleke Rasheed
Download PDF Download RIS Download Bibtex


The article presents the results of research which describes antagonism between Pb-Zn in selected plant species from the area of Czestochowa – Mirow district (north-western part of the Czestochowa Upland). There were analyzed changes in the ratio of Pb/Zn in different organs of the tested plants as a function of the Zn content changes. The content of metals in the plants and the soil was determined using atomic absorption spectrophotometry AAS. In all organs of the plants there was observed antagonistic decrease of Pb uptake and accumulation, resulting from the increase in the concentration Zn.

Antagonism between Zn and Pb in roots of the tested plants occurred at Zn content of 200–600 μg/g. In turn, antagonism in stems and flowers occurred at lower contents of zinc (100–180 μg/g). In leaves, antagonism between Pb and Zn occurred when Zn was present at the level of 300–800 μg/g.

Ex definition of the analyses confirm the presence of antagonism of lead with regard to high levels of Zn. The study also confirmed that the degree of antagonism depends on the plant species.

Go to article

Authors and Affiliations

Renata Musielińska
Jolanta Kowol
Jerzy Kwapuliński
Robert Rochel
Download PDF Download RIS Download Bibtex


The decolourization of Turquoise Blue HFG by immobilized cells of Lysinibacillus fusiformis B26 was investigated. Cells of L. fusiformis B26 were immobilized by entrapment in agar and calcium alginate matrices and attached in pumice particles. The effects of operational conditions (e.g., agar concentrations, cell concentrations, temperature, and inoculum amount) on microbial decolourization by immobilized cells were investigated. The results revealed that alginate was proven to be the best as exhibiting maximum decolourization (69.62%), followed by agar (55.55%) at 40°C. Pumice particles were the poorest. Optimum conditions for agar matrix were found: concentration was 3%, cell amount was 0.5 g and temperature was 40°C (55.55%). Ca-alginate beads were loaded with 0.5, 1.0 and 2.0 g of wet cell pellets and the highest colour removal activity was observed with 2.0 g of cell pellet at 40°C for alginate beads. Also, 0.5 and 1.0 g of pumice particles that were loaded with 0.25 and 0.5 g of cell pellets respectively were used and the results were found very similar to each other.

Go to article

Authors and Affiliations

Nazime Mercan Dogan
Tugba Sensoy
Gulumser Acar Doganli
Naime Nur Bozbeyoglu
Dicle Arar
Hatice Ardag Akdogan
Merve Canpolat

Instructions for authors

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to:

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, ( (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.

Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0,, which permits use, distribution and reproduction in any medium provided the article is properly cited, is not used for commercial purposes and no modification or adaptation are made.

© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0,, which permits use, distribution, and reproduction in any medium, provided that the article is properly cited, the use is non-commercial, and no modifications or adaptations are made

The manuscripts should be submitted on-line using the Editorial System available at Authors are asked to propose at least 4 potential reviewers, including 2 from Poland, together with their e-mail addresses. The journal does not have article processing charges (APCs) nor article submission charges.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges
The publication fee of an article in the Journal is:
25 EUR/100 zł per page (black and white or in gray scale),
35 EUR/130 zł per page (color).

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice.

Additional info

Abstracting & Indexing

Archives of Environmental Protection is covered by the following services:

AGRICOLA (National Agricultural Library)



Baidu Scholar


CABI (over 50 subsections)

Chemical Abstracts Service (CAS) - CAplus

Chemical Abstracts Service (CAS) - SciFinder

CNKI Scholar (China National Knowledge Infrastructure)



DOAJ (Directory of Open Access Journals)

EBSCO (relevant databases)

EBSCO Discovery Service

Engineering Village

FSTA - Food Science & Technology Abstracts

Genamics JournalSeek



Google Scholar

Index Copernicus


Japan Science and Technology Agency (JST)


Journal Citation Reports/Science Edition


KESLI-NDSL (Korean National Discovery for Science Leaders)

Microsoft Academic

Naviga (Softweco)

Primo Central (ExLibris)

ProQuest (relevant databases)






Summon (Serials Solutions/ProQuest)


TEMA Technik und Management

Ulrich's Periodicals Directory/ulrichsweb

WanFang Data

Web of Science - Biological Abstracts

Web of Science - BIOSIS Previews

Web of Science - Science Citation Index Expanded

WorldCat (OCLC)

This page uses 'cookies'. Learn more