Applied sciences

Archives of Foundry Engineering

Content

Archives of Foundry Engineering | 2021 | vo. 21 | No 2 |

Download PDF Download RIS Download Bibtex

Bibliography

[1] Rabbii, A. (2001). Sodium silicate glass as an inorganic binder in foundry industry. Iranian Polymer Journal. 10(4), 229-235.
[2] Stachowicz, M., Pałyga, Ł.& Kȩpowicz, D. (2020). Influence of automatic core shooting parameters in hot-box technology on the strength of sodium silicate olivine moulding sands. Archives of Foundry Engineering. 20(1), 67-72.
[3] Huafang, W., Wenbang, G. & Jijun, L. (2014). Improve the humidity resistance of sodium silicate sands by estermicrowave composite hardening. Metalurgija. 53(4), 455-458.
[4] Nowak, D. (2017). The impact of microwave penetration depth on the process of heating the moulding sand with sodium silicate. Archives of Foundry Engineering. 17(4), 115-118.
[5] M. Stachowicz, K. Granat, & D. Nowak. (2011). Application of microwaves for innovative hardening of environment-friendly water-glass moulding sands used in manufacture of cast-steel castings. Archives of Civil and Mechanical Engineering. XI(1), 209-219.
[6] Zhu, CX. (2007). Recent advances in waterglass sand technologies. China Foundry. 4(1), 13-17.
[7] Masuda Yuki, Tsubota Keiji, Ishii Kenichi, Imakoma Hironobu, Ohmura Naoto. (2009) Drying rate and surface temperature in solidification of glass particle layer with inorganic binder by microwave drying. Kagaku Kogaku Ronbunshu. 35(2). 229-231.
[8] Standardization Administration of the P.R.C. (2008). GB/T4209-2008, Sodium silicate for industry use[S]. Beijing, China Standard Press.
[9] Bourikas K., Kordulis C. & Lycourghiotis A. (2005). Differential potentiometric titration: Development of a methodology for determining the point of zero charge of metal (Hydr)oxides by one titration curve. Environmental Science & Technology. 39(11), 4100-4108.
[10] Fan ZT, Liu M, Wang HF, Long W, Hu XT. (2010). Chinese Patent No. 201010558029.3. Beijing, China National Intellectual Property Administration.
Go to article

Authors and Affiliations

Huafang Wang
1
Quanrun Wang
1
Wu Zhang
1
Xiang Gao
1
Jijun Lu
1

  1. School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, China
Download PDF Download RIS Download Bibtex

Bibliography

[1] Additive Manufacturing  General Principes  Terminology (2015). ISO/ASTM 2900:2015. BSI: London, UK.
[2] Frazier, W.E. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance. 23, 1917-1928. DOI: 10.1007/s11665-014-0958-z.
[3] Sercombe, T.B. & Li, X. (2016). Selective laser melting of aluminum and aluminum metal matrix composites. Review. Materials Technology. 31(2), 77-85. DOI: 10.1179/1753555715Y.0000000078.
[4] Yadroitsev, I., Yadroitsava, I., Bertrand, P. & Smurov, I. (2012). Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks. Rapid Prototyping Journal. 18(3), 201-208. DOI: 10.1108/13552541211218117.
[5] Olakanmi, E.O. (2013). Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: Effect of processing conditions and powder properties. Journal of Materials Processing Technology. 213(8), 1387-1405. DOI: 10.1016/j.jmatprotec.2013.03.009.
[6] Gibson, I., Rosen, D.W. & Stucker, B. (2010). Additive Manufacturing Technologies, Rapid Prototyping to Direct Digital Manufacturing. Springer New York Heidelberg Dordrecht London. DOI: 10.1007/978-1-4419-1120-9.
[7] Kempen, K., Thijs, L., Van Humbeeck, J. & Kruth, J.P. (2015). Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterization. Materials Science and Technology. 31(8), 917-923, DOI: 10.1179/1743284714Y.0000000702.
[8] Aboulkhair, N.T., Everitt, N.M., Ashcroft, I. & Tuck, C.N. (2014). Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing. 1-4, 77-86. DOI: 10.1016/j.addma.2014.08.001.9.
[9] Read, N., Wang, W. & Essa, K. & Attallah, M. (2015). Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Materials & Design. 65, 417-424. DOI: 10.1016/J.MATDES.2014.09.044.
[10] Lam, L.P., Zhang, D.Q., Liu, Z.H. & Chua, C.K. (2015). Phase analysis and microstructure characterisation of AlSi10Mg parts produced by Selective Laser Melting. Virtual and Physical Prototyping. 10 (4), 207-215. DOI: 10.1080/17452759.2015.1110868.
[11] EOS Material data sheet, EOS Aluminium AlSi10Mg. www.eos.info/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material- datasheet/aluminium/alsi10mg-9011-0024-m400_flexline_material_data_sheet_03-18_en.pdf.
[12] Concept Laser a GE Additive Company, CL 32 Al. Aluminium alloy. www.ge.com/additive/sites/default/files/ 2018-12/CL 32AL_DS_DE_US_v1.pdf.
[13] Li, W., Li, S., Liu, J., Zhang, Y., Wei, Q., Yan, C. & Shi, Y. (2016). Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Materials Science and Engineering A. 663, 116-125. DOI: 10.1016/j.msea.2016.03.088.
[14] Thijs, L., Kempen, K., Kurth, J.P. & Van Humbeeck, J. (2013). Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Materialia. 61(5), 1809-1819. DOI: 10.1016/j.actamat.2012.11.052.
[15] Brandl, E., Heckenberger, U., Holzinger, V. & Buchbinder, D. (2012). Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. Materials & Design. 34, 159-169. DOI: 10.1016/j.matdes.2011.07.067.
[16] Piekło, J., Garbacz-Klempka, A., Żuczek, R. & Małysza, M. (2019). Computational modeling of fracture toughness of Al-Si, and Al-Zn-Mg-Cu alloys with detected porosity. Journal of Materials Engineering and Performance. 28, 1373-1381. DOI: 10.1007/s11665-019-03899-2.
[17] Zych, J., Piekło, J., Maj, M., Garbacz-Klempka, A. & Piękoś, M. (2019). Influence of structural discontinuities on fatigue life of 4XXX0-series aluminum alloys. Archives of Metallurgy and Materials. 64(2), 765-771. DOI: 10.24425/amm.2019.127611.
[18] Leary, M., Maconachie, T., Sarker, A. & Faruque, O. (2019). Mechanical and thermal characterisation of AlSi10Mg SLM block suport structures. Materials and Design. 183(5), 108-138. DOI: 10.1016/j.matdes.2019.108138.
[19] EOS Material data sheet, EOS MaragingSteel MS1. www.eos.info/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material-datasheet/werkzeugstahl_ms1_cx/ms1/ms-ms1-m280_m290_400w_material_data_sheet_05-14_en.pdf
[20] Waszkiewicz, S., Fic, M., Perzyk, M. & Szczepanik, J. (1986). Die and pressure molds. Warszawa: WNT. (in Polish).
[21] Piekło, J. (2019). Application of SLM additive manufacturing method in production of selected cooling system elements in die casting molds. Kraków: Wydawnictwo Naukowe Akapit. (in Polish).
[22] Piekło, J. & Maj, M. (2014). Methods of additive manufacturing used in the technology of skeleton castings. Archives of Metallurgy and Materials, 2014 ,59, 699-702. DOI: 10.2478/amm-2014-0114.
[23] Bonderek, Z. & Chromik, S. (2006). Metal pressure die-casting and plastic injection molding. Kraków: Wydawnictwo Naukowe Akapit. (in Polish).
Go to article

Authors and Affiliations

J. Piekło
1
A. Garbacz-Klempka
1

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper reports the results of work leading to the construction of a spatial thermo-mechanical model based on the finite element method allowing the computer simulation of physical phenomena accompanying the steel sample testing at temperatures that are characteristic for the soft-reduction process. The proposed numerical model is based upon a rigid-plastic solution for the prediction of stress and strain fields, and the Fourier-Kirchhoff equation for the prediction of temperature fields. The mushy zone that forms within the sample volume is characterized by a variable density during solidification with simultaneous deformation. In this case, the incompressibilitycondition applied in the classic rigid-plastic solution becomes inadequate. Therefore, in the presented solution, a modified operator equation in the optimized power functional was applied, which takes into account local density changes at the mechanical model level (the incompressibility condition was replaced with the condition of mass conservation). The study was supplemented withexamples of numerical and experimental simulation results, indicating that the proposed model conditions, assumptions, and numerical models are correct.
Go to article

Bibliography

[1] Haga, T. & Suzuki, S.(2003). Study on high-speed twin-roll caster for aluminum alloys. Journal of Materials Processing Technology. 144(1), 895-900. DOI: 10.1016/S0924-0136(03)00400-X.
[2] Haga, T., Tkahashi, K., Ikawa, M., et al. (2004). Twin roll casting of aluminum alloy strips. Journal of Materials Processing Technology. 154(2), 42-47. DOI: 10.1016/j. jmatprotec.2004.04.018.
[3] Hojny, M. (2018). Modeling steel deformation in the semi-solid state. Switzerland: Springer.
[4] Zhang, L., Shen, H., Rong, Y., et al. (2007). Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods. Materials Science and Engineering. 466(1-2), 71-78. DOI: 10.1016/ j.msea.2007.02.103.
[5] Kalaki, A. & Ketabchi, M. (2013). Predicting the rheological behavior of AISI D2 semi-solid steel by plastic instability approach. American Journal of Materials Engineering and Technology. 1(3), 41-45. DOI: 10.12691/materials-1-3-3.
[6] Hassas-Irani, S.B., Zarei-Hanzaki, A., Bazaz, B., Roostaei, A. (2013). Microstructure evolution and semi-solid deformation behavior of an A356 aluminum alloy processed by strain induced melt activated method. Materials and Design. 46, 579-587. DOI: 10.1016/j.matdes.2012.10.041.
[7] Zhang, C., Zhao, S., Yan, G., Wang, Y. (2018). Deformation behaviour and microstructures of semi-solid A356.2 alloy prepared by radial forging process during high solid fraction compression. Journal of Engineering Manufacture. 232(3), 487, 498.
[8] Wang, J. (2016). Deformation Behavior of Semi-Solid ZCuSn10P1 Copper Alloy during Isothermal Compression. Solid State Phenomena. 256, 31-38.
[9] Shashikanth, C.H. & Davidson, M.J. (2015). Experimental and simulation studies on thixoforming of AA 2017 alloy. Mat. at High Temperatures. 32(6), 541-550. DOI: 10.1179/1878641314Y.0000000043.
[10] Bharath, K., Khanra, A.K., Davidson, M.J. (2019). Microstructural Analysis and Simulation Studies of Semi-solid Extruded Al–Cu–Mg Powder Metallurgy Alloys (pp.101-114). Advances in Materials and Metallurgy: Springer.
[11] Kang, C.G. & Yoon, J.H. (1997). A finite-element analysis on the upsetting process of semi-solid aluminum material. Journal of Materials Processing Technology. 66 (1-3), 76-84. DOI: 10.1016 / S0924-0136 (96) 02498-3.
[12] Hostos, J.C.A., et al. (2018). Modeling the viscoplastic flow behavior of a 20MnCr5 steel grade deformed under hot-working conditions, employing a meshless technique. International Journal of Plasticity. 103, 119-142. DOI: 10.1016/j.ijplas.2018.01.005.
[13] Kopp, R., Choi, J. & Neudenberger, D. (2003). Simple compression test and simulation of an Sn–15% Pb alloy in the semi-solid state. Journal of Materials Processing Technology. 135(2), 317-323. DOI: 10.1016/S0924-0136(02)00863-4.
[14] Modigell, M., Pape, L. & Hufschmidt, M. (2004). The Rheological Behaviour of Metallic Suspensions. Steel Research International. 75(3), 506-512. DOI: 10.1002/ srin.200405803.
[15] Hufschmidt, M., Modigell, M. & Petera, J. (2004). Two-Phase Simulations as a Development Tool for Thixoforming Processes. Steel Research International. 75(3), 513-518. DOI: 10.1002/srin.200405804.
[16] Jing, Y.L., Sumio, S. & Jun, Y. (2005). Microstructural evolution and flow stress of semi-solid type 304 stainless steel. Journal of Materials Processing Technology. 161(3), 396-406. DOI: 10.1016/j.jmatprotec.2004.07.063.
[17] Jin, S.D. & Hwan, O.K. (2002). Phase-field modelling of the thermo-mechanical properties of carbon steels. Acta Materialia. 50, 2259-2268. DOI: 10.1016/S1359-6454(02)00012-5.
[18] Xiao, C., et al. (2013). Optimization Investigation on the Soft Reduction Parameters of Medium Carbon Microalloy. Materials Processing Fundamentals. Springer. 109-116. DOI: 10.1007/978-3-319-48197-5_12.
[19] Han, Z., et al. (2010). Development and Application of Dynamic Soft-reduction Control Model to Slab Continuous Casting Process. ISIJ International. 50(11), 1637-1643. DOI: 10.2355/isijinternational.50.1637.
[20] Li, Y., Li, L. & Zhang, J. (2017). Study and application of a simplified soft reduction amount model for improved internal quality of continuous casting. Steel Research International. 88(12), 1700176-1700219. DOI: 10.1002/srin.201700176.
[21] Bereczki, P., et al. (2015). Different applications of the gleeble thermal–mechanical simulator in material testing, technology optimization, and process modeling. Materials Performance and Characterization 4. No. 3, 399-420. DOI: 10.1520/ MPC20150006.
[22] Hojny, M., et al. (2019). Multiscale model of heating-remelting-cooling in the Gleeble 3800 thermo-mechanical simulator system. Archives of Metallurgy and Materials. 64(1), 401-412. DOI: 10.24425/amm.2019.126266.
[23] Pieja, T., et al. (2017). Numerical analysis of cooling system in warm metal forming process (pp. 261-266). Brno, Czech: Proceedings of the Metal.
[24] Hojny, M. (2013). Thermo-mechanical model of a TIG welding process for the aircraft industry. Archives of Metallurgy and Materials. 58(4), 1125-1130. DOI: 10.2478/amm-2013-0136.
[25] Hu, D. & Kovacevic, R. (2003). Sensing, modeling and control for laser-based additive manufacturing. Journal of Machine Tools & Manufacture. 43, 51-60. DOI: 10.1016/S0890-6955(02)00163-3.
[26] Ba Lan, T., et al. (2017). A new route for semi-solid steel forging. Manufacturing Technology. 66(1), 297-300. DOI: 10.1016/j.cirp.2017.04.111.
[27] Głowacki, M. (2005). The mathematical modelling of thermo-mechanical processing of steel during multi-pass shape rolling. Journal of Materials Processing Technology. 168, 336-343. DOI: 10.1016/j.jmatprotec.2004.12.007.
[28] Lliboutry, L.A. (1987). The rigid-plastic model, Mechanics of Fluids and Transport Processes (pp. 379-410). Dordrecht: Springer.
[29] Lenard, J.G., Pietrzyk, M., Cser, L. (1999). Mathematical and physical simulation of the properties of hot rolled products. Amsterdam: Elsevier.
[30] Głowacki, M. (2012). Mathematical modeling and computer simulations of metal deformation - theory and practice (pp. 229-238). Kraków: AGH. (in Polish).
[31] Jonsta. P., et al. (2015). Contribution to the thermal properties of selected steels. Metalurgija. 54(1), 187-190.
[32] Szyczgioł, N. (1997). Równania krzepnięcia w ujęciu metody elementów skończonych. Solidification of Metals and Alloys. 30, 221-232.
[33] Lewis, R.W, Roberts, P.M. (1987). Finite element simulation of solidification problems. Applied Scientific Research. 44, 61-92. DOI: 10.1007/978-94-009-3617-1_6.
Go to article

Authors and Affiliations

M. Hojny
1
T. Dębiński
1
M. Głowacki
1
Trang Thi Thu Nguyen
1

  1. AGH University of Science and Technology, Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper a plastic deformation and a damage evolution in low-carbon cast steel containing non-metallic inclusions are analysed experimentally and numerically. Two microstructures of the cast steel have been obtained after appropriate heat treatment. Tensile tests of smooth specimens and axisymmetric notched specimens have been performed. The notched specimens have the notch radii: 1 mm, 3 mm and 7 mm. Fractography of the specimens was carried out to observe fracture mechanisms. The mechanism depended on the stress state in the notched specimens. The fractography showed the existence of two fracture mechanisms: ductile failure and by shear.
The process of the voids growth formed on the non-metallic inclusions was the process which included in the explanation of the damage mechanism. Modelling of deformation of the specimens has been used with the model suggested by Gurson, Tvergaard and Needleman. The model is implemented in the Abaqus finite element program. The computer simulation was performed using ABAQUS system. The computed output was compared with the experimental results obtained for specimens of the same shape.
Go to article

Bibliography

[1] Lachowski, J. & Biel-Gołaska M. (2000). Modelling of Damage Evolution in Cast Steel, Conference Advances in Mechanical Behaviour, Plasticity and Damage EUROMAT 2000, 7-9 November, pp. 1457-1462, Tours, France.
[2] Gurson, A.L. (1977). Continuum theory of ductile rupture by void nucleation and growth. J ournal of Engineering Materials Technology. 99, 2-15.
[3] Tvergaard, V. & Needleman, A. (1984). Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica. 32(1), 157-169.
[4] Needleman, A. & Tvergaard, V. (1984). An analysis of ductile rupture in notched bars. J ournal of Mechanics and Physics of Solids. 32(6), 461-490.
[5] Bridgman, P.W. (1952). Studies in Large Plastic Flow and Fracture. Harvard University Press, Cambridge, Massachusetts, Chapter 1.
[6] Biel-Gołaska, M. & Gołaski, L. (1994). The analysis of the ductile failure process of cast steel subjected to triaxial stress states, Foundry Reaserch Institute, Cracow, XLIV, No 1-2, pp. 37-57.
[7] Borowiecka-Jamrozek, J., Lachowski, J. (2014). An analysis of stresses in an Al-5%Si alloy under load, Conference "Recent Trends in Structural Materials", COMAT 2014, Nov. 19-21, pp. 6. Pilzen, Czech Republic.
[8] Koplik, J. & Needleman, A. (1988). Void coalescence in porous plastic solids. International Journal of Solids Structures. 24(8), 835-853.
[9] Richelsen, A.B. & Tvergaard, V. (1994). Dilatant plasticity or upper bound estimates for porous ductile solids. Acta metall materialia. 42(8), 2561-2577.
[10] Tvergaard V. (2001). Crack growth predictions by cohesive zone model for ductile fracture. Journal of Mechanics and Physics of Solids. 49, 2191-2207.
[11] SIMULIA Dassault System, Abaqus analysis user’s manual, Version 6.12 , 2017.
Go to article

Authors and Affiliations

J. Lachowski
1
J. Borowiecka-Jamrozek
1

  1. Kielce University of Technology, Al. Tysiąclecia PP. 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the possibility of the renovation of permanent steel molds for casting using electric arc welding technology. When casting liquid metal into permanent steel molds, there is chemical-thermo-mechanical wear of the surface of the mold cavity and the inlet system, which causes a deterioration of the surface quality and dimensional accuracy of the casting. For this reason, it is necessary to renovate the steel mold after a certain casting interval - mold life. In this case, the technology of manual electric arc welding with a coated electrode was used for the renovation. The welding renovation aims to increase the service life of the mold using carbide hardfacing welds, which after welding achieve high mechanical properties of the renovated mold parts. Two types of hardfacing coated electrodes were used for welding, namely the OK Weartrode 55HD electrode and the OK Weartrode 50T electrode. Macroscopic analysis, tribological tests as well as the measurement of the hardness of the welded layers were performed to evaluate the quality and the friction coefficients of the additional materials used. The properties of hardfacing welds were compared with the properties of the basic material of the high-alloy steel mold. The main advantage is in addition to increasing the durability and longevity of the mold, also reducing the cost of mold renovation compared to other renovation technologies.
Go to article

Bibliography

[1] Jankura, D., (2013). Wear evaluation of renovation layers based on hardfacing (Hodnotenie opotrebenia renovačných vrstiev na báze tvrdonávarov). Transfer Inovácií. 26, 126-129.
[2] Moravec, J. et.al. (2018). Experimental casting of forging ingots from model maeriál. In 22nd Slovak_Polish Scientific Conference on Machine Modelling and Simulations, 5-8 September 2017 (article No. 05017). Sklene Teplice, Slovakia: Univerzity of Zilina.
[3] Moravec, J. et.al. (2001). F orming machines (Tvárniace stroje). Žilina: Edis, 2011, ISBN: 978-80-554-0446-2. (in Slovak).
[4] Ptáček, Luďek et. al. (2002). Materials science (Nauka o material II). Brno: Akademické nakaldatelství CERM, s.r.o, ISBN: 80-7204-248-3.
[5] Jhvar, S.; Paul, C.P.; Jain, N.K. (2013). Causes of failure and repairing optinos for diels and molds. A review. Engineering Failure Analysis 34, 519-535.
[6] Mician, M. et al. (2018). The Repair of Foundry Defects in Steel Castings Using Welding Technology. Archives of Foundry Engineering. 18(2), 177-180. DOI: 10.24425/122524.
[7] Chander, S., Chawla, V. (2017). Failure of forging dies an update prespective. Materials Today: Proceedings 4, 1147-1157
[8] Chan, C.; Wang, Y.; Ou, H.; He, Y.; Tang, X. (2014). A review on remanufacture of dies and moulds. Journal of Cleaner Production. 64, 13-23.
[9] Pliszka, I. et al. (2018). Surface improvement by wc-cu electro-spark coatings with laser modification. In: 10th conference on terotechnology, 18-19 October 2017 (pp. 237-242). Kielce, Poland: Kielce University of Technology.
[10] Pastircak, R., Scury, J. (2017). Effect of Pressure on Crystalization of AlSiMg Alloy. Archives of Metallurgy and Materials. 62 (4), 2193-2198. DOI: 10.1515/amm-2017-0323.
[11] Gucwa, M., Beczkowski, R. & Winczek, J. (2017). The effect of type of welding sequence during hardfacing chromium cast iron for erosion resistance. Archives of Foundry Engineering. 17(3), 51-54. DOI: 10.1515/afe-2017-0089.
[12] Bronček, J., Vicen, M., Fabian, P., Radek, N., 2020, Investigation of the tribological properties of the nitride layer on heat-treated steel 100Cr6, Lecture notes in mechanical engineering, 59th International Conference of Machine Design, 11-14 September 2018, (pp. 463-471). Žilina, Slovakia: University of Žilina.
[13] Mician, M. et al. (2020) Effect of the t(8/5) cooling time on the properties of S960MC steel in the HAZ of welded joints evaluated by thermal physical simulation. Metals. 10(2), 229. DOI: 10.3390/met10020229
[14] Winczek, J. et al. (2019). The Evaluation of the Wear mechanism of High-Carbon Hardfacing Layers. Archives of Metallurgy and Materials. 64 (3), 1111-1115. DOI: 10.24425/amm.2019.129502.

Go to article

Authors and Affiliations

J. Šutka
1
R. Koňar
1
J. Moravec
1
L. Petričko
1

  1. Department of Technological Engineering, University of Zilina, Univerzitna 1, 010 26 Zilina, Slovakia
Download PDF Download RIS Download Bibtex

Bibliography

[1] Ciu, J. & Roven, H.J. (2010). Recycling of automotive aluminum. Transactions of Nonferrous Metals Society of China. 20, 2057-2063.
[2] Gaustad, G., Olivetti, E.A. & Kirchain, R. (2012). Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resources Conservation and Recycling. 58, 79-87.
[3] Kasińska, J., Bolibruchová, D. & Matejka, M. (2020). The influence of remelting on the properties of AlSi9Cu3 alloy with higher iron content. Materials. 13, 575.
[4] Das, K.S. & Green, J.A.S. (2010). Aluminum Industry and Climate Change-Assessment and Responses. JOM: The Journal of The Minerals, Metals & Materials Society. 62, 27-31.
[5] Winczek, J., Gucwa, M., Mician, M. et al. (2019). The evaluation of the wear mechanism of high-carbon hardfacing layers. Archives of Metallurgy and Materials. 64 (3), 1111-1115
[6] Medlen, D. & Bolibruchová, D. (2012). The influence of remelting on the properties of AlSi6Cu4 alloy modified by antimony. Archives of Foundry Engineering. 12(1), 81-86.
[7] Martinec, D., Pastircak, R. & Kantorikova, E. (2020). Using of Technology Semisolid Squeeze Casting by Different Initial States of Material. Archives of Foundry Engineering. 20(1), 117-121.
[8] Campbell, J. (2011). Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design. Butterworth-Heinemann, Oxford, UK.
[9] Djurdjevic, M.B., Odanovic, Z. & Talijan, N. (2011). Characterization of the Solidification Path of AlSi5Cu (1-4 wt.%) Alloys Using Cooling Curve Analysis. JOM: The Journal of The Minerals, Metals & Materials Society. 63,11, 51-57.
[10] Lukač, I. (1981). Properties and structure of non-ferrous metals. ALFA Bratislava. (in Slovak).
Go to article

Authors and Affiliations

M. Matejka
1
D. Bolibruchová
1
M. Kuriš
1

  1. University of Zilina, Faculty of Mechanical Engineering, Department of Technological Engineering, Univerzitna 1, 010 26 Zilina, Slovak Republic
Download PDF Download RIS Download Bibtex

Bibliography

[1] Pilato, L. (2010). Phenolic Resins: A century of progress (pp. 451-502). Germany Berlin: Springer Verlag. [2] Bindernagel, E. (1983). Molding sands and molding processes in foundry engineering (in German). Germany Dusseldorf: Giesserei-Verlag.
[3] Dressler, H. (1994). Resorcinol/formaldehyde resins-adhesives for wood, and other nonrubber applications. In: Resorcinol. (pp.85-124). Topics in Applied Chemistry. Springer, Boston, MA.
[4] Danielson, B. & Simonson, R. (1998). Kraft lignin in phenol formaldehyde resin. Part 1-2. Evaluation of an industrial trial. Journal of Adhesion Science and Technology. 12(9), 941-946. https://doi.org/10.1163/156856198X00551.
[5] Ramires, E.C. & Frollini, E. (2012). Tannin-phenolic resins: Synthesis, characterization, and application as matrix in biobased composites reinforced with sisal fibers. Composites: Part B. 43, 2851-2860. DOI: 10.1016/j.compositesb.2012.04.049.
[6] Sellers Jr., T. & Miller Jr., G.D. (2004). Laboratory manufacture of high moisture southern pine strandboard bonded with three tannin adhesive types. Forest Products Journal. 54(12), 296-301. https://doi.org/10.1007/s00107-014-0797-5.
[7] Pizzi, A., Horak, R.M., Ferreiraand, D., Roux, R.D. (1979). Condensates of phenol, resorcinol, phloroglucinol and pyrogallol, as flavonoids A-and B-rings model compounds with formaldehyde, Part 2. Cell. Chem. Technol. 13, 753-762. https://doi.org/10.1002/app.1979.070240618
[8] Fross, K.G. & Fuhrmann, A. (1979). Finnish plywood, partially cleboard, and fiberboard made with a lignin-base adhesive. Forest Products Journal. 29(7), 39-43.
[9] Falkehag, S.I. (1975). Lignin in materials, Applied Pol. Symp. 28, 247-257.
[10] Kuo, M., Hse, C.Y. & Huang, D.H. (1991). Alkali treated kraft lignin as a component in flakeboard resins. Holzforschung. 45(1), 47-54. DOI: 10.1515/hfsg.1991.45.1.47.
[11] Rubio, A., Virginia, M. (2004). Formulation and curing of "resol" type phenol-formaldehyde resins with partial substitution of phenol by modified lignosulfonates.(in Spanish) Universidad Complutense de Madrid, Servicio de Publicaciones.
[12] Ungureanu, E., Ungureanu, O., Capraru, A.M. & Popa, V.I. (2009). Chemical modification and characterization of straw lignin. Cellulose Chemistry & Technology. 43(7-8), 263-269.
[13] Kerns, W.D., Pavkov, K.L., Donofrio, D.J., Gralla, E.J. & Swenberg, J.A. (1983). Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure. Cancer Research. 43, 4382-4392.
[14] Mäkinen, M., Kalliokoski, P. & Kangas, J. (1999). Assessment of total exposure to phenol-formaldehyde resin glue in plywood manufacturing. International Archives of Occupational and Environmental Health. 72, 309-314. https://doi.org/10.1007/s004200050380.
[15] Nordman, H., Keskinen, H. & Tuppurainen, M. (1985). Formaldehyde asthma-rare or overlooked? Journal of Allergy and Clinical Immunology. 75, 91-99. https://doi.org/10.1016/0091-6749(85)90018-1.
[16] Khan, S. (2012). Fossil Fuel and the Environment, chapter 8: Singh, B.R. and O. Singh, O. Global trends of fossil fuel reserves and climate change in the 21st century, InTech, India.
[17] Hock, H. & Lang, S. (1944). Auto-oxidation of hydrocarbons, IX. Notice: About peroxides of benzene derivatives. Berichte der Deutschen Chemischen Gesellschaft (A and B Series), 77, 257-264. (in German).
[18] Monni, J., Rainio, J. & Pakkanen, T.T. (2007). Novel two-stage phenol formaldehyde resol resin synthesis. Journal of Applied Polymer Science. 103, 371-379. https://doi.org/10.1002/app.24615.
[19] Knop, A. & Pilato, L.A. (1985). Phenolic Resins-Chemistry, Applications and Performance. (pp. 25-35), XV, Springer-Verlag, Berlin, 3-540-15039-0.
[20] Kuhn, H. (2000).Vol 8 Mechanical Testing and Evalution. ASM Handbook, 9th ed., US: ASM International.
[21] Moulding sands, moulding and core sand mixtures. Methods for determination of compressive, tensile, bending and shearing strength,(in Russian) Russian Standards, GOST 23409.7-78.
[22] Bouajila, J., Raffin, G., Alamercery, S., Waton, H., Sanglar, C. & Grenier-Loustalot, M.F. (2003). Phenolic resins (IV). Thermal degradation of crosslinked resins in controlled atmospheres. Polymers & Polymer Composites. 11(5), 345-357. https://doi.org/10.1177/096739110301100501.
[23] Stephanou, A. & Pizzi, A. (1993). Rapid-curing lignin-based exterior wood adhesives; Part II: Esters acceleration mechanism and application to panel products. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood. 47(6), 501-506. DOI: 10.1515/hfsg.1993.47.6.501.
[24] Lei, H., Pizzi, A., Despres, A., Pasch, H. & Guanben Du. (2005). Ester Acceleration Mechanisms in Phenol-Formaldehyde Resin Adhesives. Journal of Applied Polymer Science. 100, 3075-3093. https://doi.org/10.1002/app.23714.
[25] Mocek, J. (2019). Multiparameter Assessment of the Gas Forming Tendency of Foundry Sands with Alkyd Resins. Archives of Foundry Engineering. 19(2), 41-48. DOI: 10.24425/afe.2019.127114.
[26] Wrona, R. (2015). The Sources of Surface Defects in Castings Produced in Automated Process Lines. Archives of Foundry Engineering. 15(4), 91-94. DOI: 10.1515/afe-2015-0086.

Go to article

Authors and Affiliations

A.E. Güvendik
1
K. Ay
2

  1. Çukurova Kimya Endüstrisi A.Ş., Turkey
  2. Manisa Celal Bayar University, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The phenomenon of “soft zone” is occurring in the heat affected zone (HAZ) of high strength low alloy (HSLA) steels. Therefore, the process of weld metal solidification and phase transformation in HAZ is essential to understand the behaviour of the material, especially in the case where welded joints are debilitating part of the construction. The simulation program SYSWELD is powerful tool to predict solidification and phase transformation of welding joint, what correspond to the mechanical properties of the joints. To achieve relevant results of the simulation, it is necessary to use right mathematic-material model of the investigated material. Dilatometric test is the important methods to gather necessary input values for material database. In this paper is investigated physical and metallurgical properties of S960MC steel. The dilatometric curves were carried out on the laboratory machine dilatometer DIL 805L. In addition to determination of the phase transformation temperatures at eight levels of the cooling rate, the microstructure and hardness of the material are further analysed. The hardness of the samples reflects the achieved microstructure. Depending on the cooling rate, several austenitic transformation products were observed such as pearlite, bainite, martensite and many different ferritic microstructures. The differences between the transformation temperature results using the first derivation method and the three tangent method are up to 2%. The limit cooling rate was set at value 30°C/s. The microstructure consists only of bainite and martensite and the hardness reaches a value of 348HV and higher.
Go to article

Bibliography

[1] Jambor, M., Nový, F., Mičian, M., Trsko, L., Bokůvka, O., Pastorek, F., & Harmaniak, D. (2018). Gas metal arc wleding of thermo-mechanically controlled processed S960MC steel thin sheets with different welding parameters. Communications - Scientific Letters of the University of Žilina. 20, 29-35. DOI: 10.26552.C.2018.4.29-35.
[2] Gu, Y., Tian, P., Wang, X., Han, X., Liao, B., Xiao, E. Non-isothermal prior austenite grain growth of a high-Nb X100 pipeline steel during a simulated welding heat cycle process. Materials & Design. 89, 589-596. DOI: 10.1016/j.matdes.2015.09.039.
[3] Schneider, C., Ernst, W., Schnitzer, R., Staufer, H., Vallant, R., & Enzinger, N. (2018). Welding of S960MC with undermatching filler material. Weld World. 62, 801-809. DOI: 10.1007/s40194-018-0570-1.
[4] Porter, D., Laukkanen, A., Nevasmaa, P., Rahka, K., Wallin, K. (2004). Performance of TMCP steel with respect to mechanical properties after cold forming and post-forming heat treatement. International Journal of Pressure Vessels and Piping. 81, 867-877. DOI: 10.1016/j.ijpvp.2004.07.006.
[5] Kik, T., Górka, J., Kotarska, A. & Poloczek, T. (2020). Numerical verification of tests on the influence of the imposed thermal cycles on the structure and properties of the S700MC heat-affected zone. Metals. 10, 974. DOI: 10.3390/met10070974.
[6] Mičian, M., Harmaniak, D., Nový, F., Winczek, J., Moravec, J. & Trško, L. (2020). Effect of the t8/5 cooling time on the properties of S960MC steel in the HAZ of welded joints evaluated by thermal physical simulation. Metals. 10(2), 229. DOI: 10.3390/met10020229.
[7] Górka, J., Janicki, D., Fidali, M., & Jamrozik, W. (2017). Thermographic assessment of the HAZ properties and structure of thermomechanically treated steel. International Journal of Thermophysics. 38, 183-203. DOI: 10.1007/s10765-017-2320-9.
[8] Gomez, M., Vales, P., & Medina S.F. (2011). Evolution of microstructure and precipitation state during thermomechanical processing of a X80 microalloyed steel. Materials Science and Engineering: A. 528, 4761-4773. DOI: 10.1016/j.msea.2011.02.087.
[9] Qiang, X., Bijlaard, F.S.K., & Kolstein, H., (2013) Post-fire performance of very high strength steel S960. Journal of Constructional Steel Research. 80, 235-242. DOI: 10.1016/.jcsr.2012.09.002.
[10] Moon, A.P., Balasubramaniam, R., & Panda, B. (2010) Hydrogen embrittlement of microalloyed rail steels. Materials Science and Engineering: A. 527, 3259-3263. DOI: 10.1016/j.msea.2010.02.013.
[11] Zhao, J., Jiang, Z., Kim, J. S., and Lee, C. S. (2013). Effects of tungsten on continuous cooling transformation characteristic of microalloyed steels. Materials and Design. 49, 252-258. DOI: 10.1016/j.matdes.2013.01.056.
[12] Villalobos, J.C., Del-Pozo, A., Campillo, B., Mayen, J., Serna, S. Microalloyed steels trough history until 2018: Review of chemical composition, processing and Hydrogen service. Metals. 8, 1-49. DOI: 10.3390/met8050351.
[13] Krauss, G. (2015). Steels: processing, structure and performance. Ohio, ASM International. Available on the Internet: https://www.asminternational.org/documents/ 10192/0/05441G_TOC+%282%29.pdf/82ee161b-e171-9960-caab-74619423b6a4.
[14] Fonda, R. W., Vandermeer, R. A., & Spanos, G. (1998). Continuous Cooling Transformation (CCT) Diagrams for advanced navy welding consumables. Naval Research Laboratory, United States Navy. DOI: NRL/MR/6324—98-8185
[15] Kawulok, P., Kawulok, R., & Rusz, S. (2017). Methodology of compiling decay diagrams of the CCT and DCCT type (i.e. also with regard to the influence of previous deformation (in Czech), Retrieved October 10, 2020. Available on the Internet: https://www.fmt.vsb.cz/export/sites/fmt/633/cs/studium/navody-k-cviceni/deformacni-chovani-materialu/cviceni-12/Doc/cv12.pdf.
[16] Moravec, J., Novakova, I., Sobotka, J. et al. (2019). Determination of grain growth kinetics and assessment of welding effect on properties of S700MC steel in the HAZ of welded joints. Metals. 9(6). DOI: 10.3390/met9060707.
[17] Palček, P., Hadzima, B., Chalupová, M. (2004). Experimental methods in engineering materials (in Slovak) Žilina, EDIS ŽU Žilina, ISBN 80-8070-179-2.
[18] Pawlowski, B., Bala, P. & Dziurka, P. (2014). Improper interpretation of dilatometric data for cooling transformation in steels. Archives of Metallurgy and Materials. 59(3), 1159-1161. DOI: 10.2478/amm-2014-0202.
[19] Herath, D., Mendez, P.F., Kamyabi-Gol, A. (2017). A comparison of common and new methods to determine martensite start temperature using a dilatometer. Canadian Metallurgical Quarterly. 56, 85-93. DOI: 10.1080/00084433.2016.1267903.
[20] Vondráček, J. (2013) Influence of heating and cooling rate on transformational changes of material (in Czech), Bachelor thesis, Technical University of Liberec, Czech Republic. Available on the Internet: https://dspace.tul.cz/bitstream/handle/15240/153925/Bakalarska_prace_Vliv_rychlosti_ohrevu_a_ochlazovani_na_transformacni_zmeny_materialu_Jiri_Vondracek.pdf?sequence=1.
[21] Bräutigam–Matus, K., Altamirano, G., Salinas, A., Flores, A. & Goodwin, F. (2018). Experimental Determination of Continuous Cooling Transformation (CCT) Diagrams for Dual-Phase Steels from the Intercritical Temperature Range. Metals. 8, 674. https://doi.org/10.3390/met8090674.
[22] Yang, X., Yu, W., Tang, D., Shi, J., Li, Y., Fan, J., Mei, D., & Du, Q. (2020). Effect of cooling rate and austenite deformation on hardness and microstructure of 960MPa high strength steel. Science and Engineering of Composite Materials. 27(1), 415-423. DOI: https://doi.org/10.1515/secm-2020-0045.
[23] Pawłowski, B., Bała, P. & Dziurka, R. (2014). Improper interpretation of dilatometric data for cooling transformation in steels. Archives of Metallurgy and Materials. 59(3). DOI: 10.2478/amm-2014-0202.
[24] Motyčka, P., Kovér, M. (2012). Evaluation methods of dilatometer curves of phase transformations. In COMAT 2012, 2nd International Conference on Recent Trends in Structural Materials, 21-22 November 2012, Plzeň, Czech Republic, Recent trends in structural materials. Available on the Internet: http://comat2012.tanger.cz/files/proceedings/11/reports/1237.pdf.
[25] Ghafouri, M., Ahn, J., Mourujärvi, J., Björk, T., Larkiola, J. (2020) Finite element simulation of welding distortions in ultra-high strength steel S960 MC including comprehensive thermal and solid-state phase transformation models, Engineering Structures. 219, DOI: 10.1016/j.engstruct.2020.110804.
[26] Bayock, F.N., Kah, P., Mvola, B., Layus, P. (2019). Effect of heat input and undermatched filler wire on the microstructure and mechanical properties of dissimilar S700MC/S960QC high-strength steels. Metals. (9). DOI: 10.3390/met9080883
Go to article

Authors and Affiliations

M. Málek
1
M. Mičian
1
J. Moravec
1

  1. Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec I, Czech Republic
Download PDF Download RIS Download Bibtex

Bibliography

[1] Abushosha, R., Vipond, R. & Mintz, B. (1991). Influence of titanium on hot ductility of as cast steels. Materials Science & Technology. 7(7), 613-621.
[2] Chen, Z., Li, M., Wang, X., He, S. & Wang, Q. (2019). Mechanism of floater formation in the mold during continuous casting of Ti-stabilized austenitic stainless steels. Metals. 9, 635-649.
[3] Karmakar, A., Kundu, S., Roy, S., Neogy, S., Srivastava, D. & Chakrabarti, D. (2014). Effect of microalloying elements on austenite grain growth in Nb–Ti and Nb–V steels. Materials Science and Technology. 30(6), 653-664.
[4] Reyes-Calderón, F., Mejía, I., Boulaajaj, A. & Cabrera, J.M. (2013). Effect of microalloying elements (Nb, V and Ti) on the hot flow behavior of high–Mn austenitic twinning induced plasticity (TWIP) steel. Materials Science and Engineering: A. 560, 552-560.
[5] Chen, C.Y., Jiang, Z.H., Li, Y., Zheng, L.C., Huang, X.F. & Yang, G. (2019). State of the art in the control of inclusions in tire cord steels and saw wire steels–A Review. Steel Research International. 6, 1-13.
[6] Lei, J.L., Zhao, D.N., Fu, Y.J., & Xu, X.F. (2019). Research on the characterization of Ti inclusions and their precipitation behavior in tire cord steel. Archives of Foundry Engineering. 19(3), 33-37.
[7] Cui, H.Z. & Chen, W. Q. (2012). Effect of boron on morphology of inclusions in tire cord steel. Journal of Iron and Steel Research International. 19( 4), 22-27.
[8] Wu, S., Liu, Z., Zhou, X., Yang, H. & Wang, G. (2017). Precipitation behavior of Ti in high strength steels. Journal of Central South University. 24(12), 2767-2772.
[9] Petit, J., Sarrazin-Baudoux, C. & Lorenzi, F. (2010). Fatigue crack propagation in thin wires of ultrahigh strength steels. Procedia Engineering. 2, 2317-2326.
[10] Liu, H.Y., Wang, H.L., Li, L., Zheng, J.Q., Li, Y.H. & Zeng, X.Y. (2011). Investigation of Ti inclusions in wire cord steel. Ironmaking and Steelmaking. 38(1), 53-58.
[11] Cai, X.F., Bao, Y.P., Wang, M., Lin, L., Dai, N.C. & Gu, C. (2015). 69Investigation of precipitation and growth behavior of Ti inclusions in tire cord steel. Metallurgical Research and Technology. 112(4), 407-418.
[12] Lei, J.L., Xue, Z.L., Jiang, Y.D., Zhang, J. & Zhu, T.T. (2012). Study on TiN precipitation during solidification for hypereutectoid tire cord steel. Metalurgia International. 17(9), 10-15.
[13] Chen, J.X. (2010). Common charts and databook for steelmaking. (2nd ed.). Beijing: Metallurgical Industry Press.
[14] Clyne, T.W., Wolf, M. & Kurz, W. (1982). The effect of melt composition on solidification cracking of steel with particular reference to continuous casting. Metallurgical and Materials Transactions B. 13(2), 259-266.
[15] Wada, H., & Pehlke, R.D. (1985). Nitrogen solubility and nitride formation in austenitic Fe–Ti alloys. Metallurgical and Materials Transactions B. 16(4), 815-822.
[16] Ma, Z., & Janke, D. (1998). Characteristics of oxide precipitation and growth during solidification of deoxidized steel. ISIJ International. 38(1), 46-52.
[17] Darken, L.S. (1967). Thermodynamics of binary metallic solutions. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers. 239(1), 80-89.
[18] Yoshikawa, T., & Morita, K. (2007). Influence of alloying elements on the thermodynamic properties of titanium in molten steel. Metallurgical and Materials Transactions B. 38(4), 671-680.
[19] Kim, W., Jo, J., Chung, T., Kim, D. & Pak, J. (2007). Thermodynamics of titanium, nitrogen and TiN formation in liquid iron. ISIJ International. 47(8), 1082-1089.
[20] Ma, W.J., Bao, Y.P., Zhao, L.H., & Wang, M. (2014). Control of the precipitation of TiN inclusions in gear steels. International Journal of Minerals Metallurgy and Materials. 21(3), 234-239.
[21] Huang, X.H. (2001). Theory of Iron and Steel Metallurgy. (3rd ed.). Beijing: Metallurgical Industry Press.
[22] Won, Y.M. & Thomas, B.G. (2011). Simple model of micro–segregation during solidification of steels. Metallurgical and Materials Transactions A. 32(7), 1755-1767.
[23] Ohnaka, I. (1986). Mathematical-analysis of solute redistribution during solidification with diffusion in solid–phase. ISIJ International. 26(12), 1045-1051.
[24] Maugis, P. & Gouné, M. (2005). Kinetics of vanadium carbonitride precipitation in steel: a computer model. Acta Materialia. 53(12), 3359-3367.
[25] Manohar, P.A., Dunne, D.P., Chandra, T. & Killmore, C.R. (2007). Grain growth predictions in microalloyed steels. ISIJ International, 36(2), 194-200.
[26] Choudhary, S.K. & Ghosh, A. (2009). Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel. ISIJ International. 49(12), 1819-1827.
[27] Gao, S., Wang, M., Guo, J.L., Wang, H. & Bao, Y.P. (2019). Extraction, distribution, and precipitation mechanism of TiN–MnS complex inclusions in Al-killed titanium alloyed interstitial free steel. Metals and Materials International. 12, 1-9.
Go to article

Authors and Affiliations

Jialiu Lei
1
Xiumin Wang
1
Dongnan Zhao
1
Yongjun Fu
1

  1. Hubei Polytechnic University, China
Download PDF Download RIS Download Bibtex

Bibliography

[1] Arab, N. (2017). Competitive nucleation in grey cast irons. Archives of Foundry Engineering. 17(4), 185-189.
[2] Metalbulletin.ru (2020). Cast iron: the first candidate for decline? Retrieved from: https://www.metalbulletin.ru/a/101.
[3] Hannapel, J. & Schmeisse, C. (2020). New EPA air emissions standards for iron and steel foundries. Modern Casting. 11, 42-45.
[4] Lipshaw, J. (2020). Environmental impact across their life cycles. Modern Casting, 10, 34-38.
[5] Promzn.ru (2020). Features of steel production: methods, technologies and raw materials. Retrieved from: https://promzn.ru/metallurgiya/proizvodstvo-stali.html.
[6] Stroiset.ru (2020). Analysis and trends in the development of the cast iron market. Retrieved from: https://www.stroiset.ru/analiz-i-tendencii-razvitiya-rynka-chuguna.
[7] Metallurgicheskii byulleten (2020). Chugunnye reki i rucheiki. [Cast iron rivers and rivulets. Metallurgical bulletin]. Retrieved from: https://www.metaltorg.ru/analytics /black/?id=759/.
[8] MIT Emerging Trends Report (2013). Cambridge, MA: Massachusetts Institute of Technology. Retrieved from: http://2013.forinnovations.org/upload/MIT_Technology_Review.pdf.
[9] World Steel Association. 50 years of the World Steel Association. Retrieved from: https://www.worldsteel.org/ publications/bookshop/product-details.~50-years-of-the-World-Steel-Association~PRODUCT~50-years-of-the-World-Steel-Association~.html.
[10] Metallosnabzhenie i sbyt: internet-zhurnal. (2018). Kitai prodolzhit sokrashchenie izbytochnykh moshchnostei. [China will continue to reduce excess capacity. Metal supply and sales]. Retrieved from: http://www.metalinfo.ru/ru/ news/100765.
[11] Shatokha, V. (2016). Post-Soviet issues and sustainability of ferrous metallurgy in Eastern Europe. Mineral Processing and Extractive Metallurgy, 3, 1-8.
[12] Businesstat (2017). Analiz mirovogo rynka chuguna v 2012-2016 gg, prognoz na 2017-2021 gg [Analysis of the global cast iron market between 2012 and 2016; the outlook for the period from 2017 to 2021]. Retrieved from: https://marketing.rbc.ru/research/39673//
[13] Profile 2018/2019. World Steel Association [electronic resource] Retrieved from: https://www.worldsteel.org/ publications/bookshop/product-details.~Profile-2017-2018~PRODUCT~Profile2017~.html.
[14] Steel Statistical Yearbook 2019. World Steel Association [electronic resource] Retrieved from: http:// https://www.worldsteel.org/publications/bookshop/product-details.~Steel-Statistical-Yearbook-2017~PRODUCT~SSY2017~.html.
[15] ACG (2020). Rynok chuguna v Rossii. Tekushchaya situatsiya i prognoz 2020-2024 gg. [Cast iron market in Russia. The current situation and the outlook for the period from 2020 to 2024]. Retrieved from: https://alto-group.ru/otchot/rossija/380-rynok-chuguna-tekushhaya-situaciya-i-prognoz-2014-2018-gg.html/.

Go to article

Authors and Affiliations

S.S. Golubev
1
V.D. Sekerin
1
A.E. Gorokhova
1
G.V. Komlatskiy
2
Y.I. Arutyunyan
2

  1. Moscow Polytechnic University, Bolshaya Semenovskaya Street, 38, Moscow, 107023, Russia
  2. Kuban State Agrarian University, Kalinina Street, 13, Krasnodar, 350044, Russia
Download PDF Download RIS Download Bibtex

Bibliography

[1] Gaspar, S., Pasko, J., Majernik, J. (2017). Influence of structure adjustment of gating system of casting mould upon the quality of die cast. Lüdenscheid: RAM-Verlag.
[2] Pasko, J., Gaspar, S. (2014). T echnological factors of die casting. Lüdenscheid: RAM-Verlag.
[3] Ruzbarský, J., Pasko, J., Gaspar, S. (2014). Techniques of Die casting. Lüdenscheid: RAM-Verlag.
[4] Majernik, J. (2019) The issue of the gating system design for permanent dies (Problematika návrhu vtokových soustav permanentních forem pro lití kovů pod tlakem). Stalowa Wola: Wydawnictwo Sztafeta Sp. z.o.o.
[5] ČSN 22 8601. C onstruction of compression casting moulds: Instructions (Formy tlakové licí: Zásady pro navrhování). Praha: Český normalizační institute, 1984. 32.
[6] El-Fotouh, M.R.A., Shash, A.Y. & Gadallah, M.H. (2018). Semi-automated gating system design with optimum gate and overflow positions for aluminum HPDC. In A. Öchsner & H. Altenbach (Eds.) Improved Performance of Materials (37-51). Cham, Switzerland:Springer Verlag. DOI: 10.1007/978-3-319-59590-0_4.
[7] Pinto, H.A., et al. (2019). Improvement and validation of Zamak die casting moulds. In 29th International Conference on Flexible Automation and Intelligent Manufacturing, 24-38 June 2019 (pp. 1547-1557). Limerick; Ireland: Elsevier B.V.. DOI: 10.1016/j.promfg.2020.01.131.
[8] Chavan, R. & Kulkarni, P.S. (2020). Die design and optimization of cooling channel position for cold chamber high pressure die casting machine. In 2nd International Conference on Emerging trends in Manufacturing, Engines and Modelling, 23-24 December 2019 (Article number 012017). Mumbai, India: Institute of Physics Publishing. DOI: 10.1088/1757-899X/810/1/012017.
[9] Dabhole, S.S., Kurundwad, C.A. & Prajapati, S.R. (2017). Design and development of die casting die for rejection reduction. International Journal of Mechanical Engineering and Technology. 8(5), 1061-1070.
[10] Altuncu, E., Doğan, A. & Ekmen, N. (2019). Performance evaluation of different air venting methods on high pressure aluminum die casting process. Acta Physica Polonica A. 135(4), 664-667. DOI: 10.12693/APhysPolA.135.664.
[11] Zhao, X. et al. (2018). Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation. China Foundry. 15(6), 436-442. DOI: 10.1007/s41230-018-8052-z.
[12] Qin, X.-Y., Su, Y., Chen, J. & Liu, L.-J. (2019). Finite element analysis for die casting parameters in high-pressure die casting process. China Foundry. 16(4), 272-276. DOI: 10.1007/s41230-019-8088-8.
[13] Cleary, P.W., Savage, G., Ha, J. & Prakash, M. (2014). Flow analysis and validation of numerical modelling for a thin walled high pressure die casting using SPH. C omputational Particle Mechanics. 1(3), 229-243. DOI: 10.1007/s40571-014-0025-4.
[14] Majernik, J. & Podaril, M. (2019). Influence of runner geometry on the gas entrapment in volume of pressure die cast. A rchives of Foundry Engineering. 19(4), 33-38. DOI: 10.24425/afe.2019.129626.
[15] Dańko, R., Dańko, J. & Stojek, J. (2015). Experiments on the Model Testing of the 2nd Phase of Die Casting Process Compared with the Results of Numerical Simulation. Archives of Foundry Engineering. 15(4), 21-24. DOI: 10.1515/afe-2015-0072.
[16] Gaspar, S. & Pasko, J. (2016). Pressing Speed, Specific Pressure and Mechanical Properties of Aluminium Cast. A rchives of Foundry Engineering. 16(2), 45-50. DOI: 10.1515/afe-2016-0024
Go to article

Authors and Affiliations

J. Majerník
1
M. Podařil
1
D. Gojdan
2

  1. Institute of Technology and Business in České Budějovice, Czech Republic
  2. Technical University of Košice, Faculty of Manufacturing Technologies with the Seat in Prešov, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

The results of microstructure examinations and UTS, YS, El, RA carried out on low-carbon cast steel containing 0.15% C. The tests were carried out on specimens cut out from samples cast on a large-size casting and from samples cast in separate foundry moulds. It has been shown that significant differences in grain size observed in the material of the separately cast samples and cast-on samples occur only in the as-cast. In the as-cast state, in materials from different tests, both pearlite percent content in the structure and mean true interlamellar spacing remain unchanged. On the other hand, these parameters undergo significant changes in the materials after heat treatment. The mechanical properties (after normalization) of the cast-on sample of the tested cast steel were slightly inferior to the values obtained for the sample cast in a separate foundry mould. The microscopic examinations of the fracture micro-relief carried out by SEM showed the presence of numerous, small non-metallic inclusions, composed mainly of oxide-sulphides containing Mn, S, Al, Ca and O, occurring individually and in clusters.
Go to article

Bibliography

[1] Kniaginin, G. (1977). Metallurgy and casting of steel. Katowice: Śląsk. (in Polish).
[2] Standard PN-ISO 3755-1994. Cast carbon steels for general engineering purposes.
[3] Głownia, J. (2017). Metallurgy and technology of steel castings. Sharjah: Bentham Books. ISBN: 978-1-68108-571-5.
[4] Kasińska, J. (2017). Effects of rare earth metal addition on wear resistance of chromium-molybdenum cast steel. Archives of Foundry Engineering. 17(3), 63-68. ISSN: 1897-3310.
[5] Lis, T. (2009). High purity steel metallurgy. Gliwice: Wyd. Politechniki Śląskiej. (in Polish).
[6] Torkamani, H., Raygan, S., Mateo, C. G., Rassizadehghani, J. & Palizdar, Y. et al. (2018). Contributions of rare earth element (La, Ce) addition to the impact toughness of low carbon cast niobium microalloyed steels. Metals and Materials International. 24(4), 773-788. DOI: 10.1007/ s12540-018-.0084-9.
[7] Bartocha, D., Suchoń, J., Baron, Cz. & Szajnar, J. (2015). Influence of low alloy cast steel modification on primary structure refinement type and shape of nonmetallic inclusions. Archives of Metallurgy and Materials. 60(1). 77-83. DOI: 10.1515/2015-0013.
[8] Żak, A., Zdonek, B., Adamczyk, M., Szypuła, I., Kutera, W. & Kostrzewa, K. (2015) Technology for manufacturing large – size steel castings for applications under extreme operating conditions. Prace IMŻ. 2: 21-28.
[9] Najafi, H., Rassizadehghani, J. & Halvaaee, A. (2007) Mechanical properties of as-cast microalloyed steels containing V, Nb and Ti. Materials Science and Technology. 23, 699-705. https ://doi.org/10.1179/17432 8407X17975 5.
[10] Miernik, K., Bogucki, R. & Pytel, S. (2010) Effect of quenching techniques on the mechanical properties of low carbon structural steel. Archives Foundry Engineering. 10 (SI 3), 91-96.
[11] Brooks, Ch. R. (1999). Principles of the heat treatment of plain carbon and low alloy steels. Materials Park: ASM International.
[12] Bolouri, A., Tae-Won, Kim & Chung, Gil Kang. (2013). Processing of low-carbon cast steels for offshore structural applications. Materials and Manufacturing Processes. 28: 1260-1267. DOI: 10.1080/10426914.2013.792424.
[13] Standard PN-EN ISO 3755-1994. 6892-1:2009. Metallic materials. Tensile testing. Part 1: Method of test at room temperature.
[14] Ryś, J. (1983). Quantitative metallography. AGH. (in Polish).
[15] Vander Voort, G. F. (1984). Measurement of the interlamellar spacing of pearlite. Metallography. 17: 1-17. https://doi.org/10.1016/0026-0800(84)90002-8.
[16] Wyrzykowski, J., W., Pleszakow, E., Sieniawski, J. (1999). M etal deformation and fracture. Warszawa: WNT. ISBN 83-204-2341-4. (in Polish).
[17] Maciejny, A. (1973). The fragility of metals. Katowice: Śląsk. (in Polish).
[18] Pacyna, J. (1986). Effects of nonmetallic inclusions on fracture toughness of tool steels. Steel Research. 57(11), 586-592. https://doi.org/10.1002/srin.198600830.

Go to article

Authors and Affiliations

B.E. Kalandyk
1
R.E. Zapała
1

  1. AGH University of Science and Technology, Department of Cast Alloys and Composites Engineering, Faculty of Foundry Engineering, ul. Reymonta 23, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper compares changes in the structure and mechanical properties due to the synergistic effect of alloying elements Zr and Ti. It is assumed that by increasing the content of Zr and Ti in the aluminium alloy, better mechanical properties will be achieved. Paper focuses on description of the differences between the samples casted into the shell mold and the metal mold. Main difference between mentioned molds is a different heat transfer coefficient during pouring, solidification and cooling of the metal in the mold. The main goal was to analyse the influence of Zr and Ti elements and compare the mechanical properties after the heat treatment. Curing and precipitation aging were used during the experiment. The effect of the elements on AlSi7Mg0.3 alloy created differences between the excluded Zr phases after heat treatment. Evaluation of the microstructure pointed to the decomposition of large predominantly needle Zr phases into smaller, more stable formations.
Go to article

Bibliography

[1] Bolibruchová, D., Tillová, E. (2005). Al-Si foundry alloys. Žilina.
[2] Michna, Š., Lukáč, I. (2005). et al. Encyclopedia of aluminum.
[3] Bechný, L. (1990). Foundry metallurgy and technology. ALFA Bratislava.
[4] Bolibruchová, D., Kuriš, M. & Matejka, M. (2019). Effect of Zr on selected properties and porosity of AlSi9Cu1Mg alloy for the purpose of production of high-precision castings. Manufacturing Technology. 19(4), 1213-2489.
[5] Bolibruchova, D., Macko, J. & Bruna, M. (2014). Elimination of negative effect of Fe in secondary alloys AlSi6Cu4 (EN AC 45 000, A 319) by nickel. Archives of Metallurgy and Materials, 59, 717-721
[6] Mahmudi, R., Sepehrband, P. & Ghasemi, H.M. (2006). Improved properties of A319 aluminum casting alloy modified with Zr. Materials Letters. 2606-2610. DOI 10.1016/j.matlet. 2006.01.046
[7] Peng, G., Chen, K., Fang, H. & Chen, S. (2012). A study of nanoscale Al3(Zr,Yb) dispersoids structure and thermal stability in Al–Zr–Yb alloy. Materials Science and Engineering. Volume 535, 311-315.
[8] Sha, G. & Cerezo, A. (2004). Early-stage precipitation in Al−Zn−Mg−Cu alloy (7050). Acta Materialia. 52(15), 4503-4516.
[9] Lü, X., Guo, E., Rometsch, P. & Wang, L. (2012). Effect of one-step and two-step homogenization treatments on distribution of Al3Zr dispersoids in commercial AA7150 aluminium alloy. Transactions of Nonferrous Metals Society of China. 22, 2645-2651. Science Direct.
[10] STN EN 1706. AC–42100. Aluminium alloy for general purpose castings.
[11] Liu, S., Zhang, X.M. & Chen, M.A. & You, J. H. (2008). Influence of aging on quench sensitivity effect of 7055 aluminium alloy. Materials Characterization, 59(1), 53-60.
[12] Pourkia, N., Emamy, M., Farhangi, H. & Seyed, E. (2010). The effect of Ti and Zr elements and cooling rate on the microstructure and tensile properties of a new developed super high-strength aluminium alloy. Materials Science and Engineering A. 527, 5318-5325.
[13] Tillova, E., Chalupova, M. (2009). Structural analysis of Al-Si alloys. Žilina: EDIS ŽU UNIZA.

Go to article

Authors and Affiliations

E. Kantoríková
1
M. Kuriš
1
R. Pastirčák
1

  1. Department of Technological Engineering, University of Žilina in Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
Download PDF Download RIS Download Bibtex

Bibliography

[1] Drevin, J. (2014). Triad – a new range of user-friendly, high-strength refractory concretes. Przegląd Odlewnictwa. 9-10, 390-393. (in Polish).
[2] Rybak, M. (2011). Influence of alumina cement hydration conditions on concrete properties. Piece Przemysłowe & Kotły. 1, 21-25. (in Polish).
[3] Drevin J. (2011). Triad – Triad high-performance castable linings. Foundry Practice. 253(6) 16-20.
[4] Cygan B., Dorula J., Jezierski J. (2018). TRIAD - modern technology of non-cement concrete in cast iron foundry. In Congress Proceedings of the 73rd World Foundry Congress "Creative Foundry", 23rd–27th September 2018 (pp. 561-562). Krakow, Poland: Polish Foundrymen's Association.

Go to article

Authors and Affiliations

B. Cygan
1 2
J. Dorula
3
J. Jezierski
1

  1. Silesian University of Technology, Department of Foundry Engineering, 7 Towarowa, 44-100 Gliwice, Poland
  2. Teksid Iron Poland Sp. z o.o., 49 Ciężarowa, 43-430 Skoczów, Poland
  3. Vesuvius Poland Sp. z o.o. , Foundry Division - Biuro Handlowe, Portowa Business Center, 8 Portowa, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Bibliography

[1] Stauder, B.J. (2018). Investigation on the removal of internal sand cores from aluminium castings. Dissertation, Montanuniversitäte, University of Leoben, Leoben, Austria.
[2] Schindelbacher, G. & Kerber H. (2013). Umfassende Charakterisierung von Formstoffen mit einer neuen Prüfmethode. Giesserei Rundschau. 60 Heft 3/4, 58-66.
[3] Geraseva, O. (2016). P otential alternativer Formstoffe zur Kernherstellung. Masterarbeit, Montanuniversitäte, University of Leoben, Leoben, Austria.
[4] Conev, M., Vasková, I., Hrubovčáková, M. & Hajdúch, P. (2016). Impact of Silica Sand Granulometry on Bending Strength of Cores Produced by ASK Inotec Process. Manufacturing Technology. 16(2), 327-334. DOI: 10.21062/ujep/x.2016/a/1213-2489/MT/16/2/327.
[5] Vasková, I., Varga, L., Prass, I., Dargai, V., Coney, M., Hrubovčáková, M., Bartošová, M., Buľko, B. & Demeter P. (2020). Examination of Behavior from Selected Foundry Sands with Alkali Silicate-Based Inorganic Binders. Metals. 10(2), 235. DOI: 10.3390/met10020235.
[6] Flemming, E., Tilch, W. (1993). Formstoffe und Formverfahren. Deutscher Verlag fur Grundstoffindustrie, Leipzig – Stuttgart.
[7] Dańko, R. (2017). Influence of the Matrix Grain Size on the Apparent Density and Bending Strength of Sand Cores. Archives of Foundry Engineering. 17(1), 27-30. DOI: 10.1515/afe-2017-0005.
[8] Beňo, J. & Adamusová K. & Merta V. & Bajer T. (2019) Influence of Silica Sand on Surface Casting Quality. Archives of Foundry Engineering. 19(2), 5-8. DOI: 10.24425/afe.2019.127107.
[9] Marinšek, M., Zupan, K. (2011). Influence of the granulation and grain shape of quartz sands on the quality of foundry cores, Materials and Technology. 45 (5), 451-455.
[10] Löchte, K. (1998.) Working with the Cold Box Process in the Coremaking Department of a Foundry. Retrieved January 29, 2021, from: http://metkoha.com/documents/Working% 20with%20the%20Coldbox%20Process1.pdf.
[11] Bechný, V. (2012). Zukünftige Herausforderungen an Gießereisande. Giesserei-Rundschau. 59. Heft 3/4, 81-83.
[12] Kotzmann, J. & Bechný V. (2013). Die Zukunft der Form- und Kernherstellung. Retrieved January 29, 2021, from: http://www.giba.at/pdf/giba-de.pdf.
[13] Iden, F., Pohlmann, U., Tilch, W. & Wojtas, H.J. (2011). Strukturen von Cold-Box-Bindersystemen und die Möglichkeitihrer Veränderung. Giesserei Rundschau. 58, 1/2, 3-8.
[14] Iden, F., Tilch, W. & Wojtas, H.J. (2011). Die Haftungsmechanismen von Cold-Box-Bindemitteln auf der Formstoffoberfläche. Giesserei. 5/2011, 24-36.
[15] Dargai, V., Polzin, H., Varga, L., Dúl, J. (2015). Determination of granulometric properties of foundry sands with image analysis. (Öntödei homokok granulometriai tulajdonságainak meghatározása képelemzéssel). MultiScience - XXIX. microCAD International Multidisciplinary Scientific Conference, 9-10 April 2015. University of Miskolc – Miskolc, Hungary.
[16] Dargai, V., Polzin, H. & Varga, L. (2018). Die Bestimmung der granulometrischen Eigenschaften von Gießereisanden mittels dynamischer Bildanalyse. Giesserei Praxis. 4/2018, 19-22.
[17] Bodycomb, J. (2018). Size and shape of Particles from Dynamic Image Analysis. Retrieved January 29, 2021, from: https://www.slideshare.net/HORIBA/size-and-shape-of-particles-from-dynamic-image-analysis.
[18] Microtrac MRB (2017). Comparison Between Dynamic Image Analysis, Laser Diffraction and Sieve Analysis. Retrieved January 29, 2021, from: https://www.azom.com/article.aspx?ArticleID=14331.
[19] Raatz, G. (2014). Trends in der Partikelgrößenanalyse. Powtech / Technopharm – Messtechnik. 9/2014, 25-28. [20] Ridsdale and Ridsdale DieterT. Foundry sand testing equipment operating instructions (AFS). Catalogue No. 800, Retrieved January 29, 2021, from: https://www.basrid.co.uk/ridsdale/images/pdf/AFS_OIM.pdf

Go to article

Authors and Affiliations

H. Hudák
1
G. Gyarmati
1
L. Varga
1

  1. Institute of Foundry, Faculty of Materials Science and Engineering, University of Miskolc, Hungary

This page uses 'cookies'. Learn more