Applied sciences

Archive of Mechanical Engineering

Content

Archive of Mechanical Engineering | 2021 | vol. 68 | No 3 |

Download PDF Download RIS Download Bibtex

Abstract

In this paper, a numerical and experimental investigation of geometrical parameters of the blade for plastic bottle shredder was performed based on the Taguchi method in combination with a response surface method (RSM). Nowadays, plastic waste has become a major threat to the environment. Shredding, in which plastic waste is shredded into small bits, ready for transportation and further processing, is a crucial step in plastic recycling. Although many studies on plastic shredders were performed, there was still a need for more researches on the optimization of shredder blades. Hence, a numerical analysis was carried out to study the influences of the relevant geometrical parameters. Next, a two-step optimization process combining the Taguchi method and the RSM was utilized to define optimal parameters. The simulation results clearly confirmed that the current technique can triumph over the limitation of the Taguchi method, originated from a discrete optimization nature. The optimal blade was then fabricated and experimented, showing lower wear via measurement by an ICamScope® microscope. Hence, it can be clearly inferred from this investigation that the current optimization method is a simple, sufficient tool to be applied in such a traditional process without using any complicated algorithms or expensive software.
Go to article

Bibliography

[1] S. Alavi, S. Thomas, K.P. Sandeep, N. Kalarikkal, J. Varghese, and S.Yaragalla. Polymers for Packaging Applications. Apple Academic Press, 2014.
[2] A.W. Ayo, O.J. Olukunle, and D.J. Adelabu. Development of a waste plastic shredding machine. International Journal of Waste Resources, 7(2):1-4, 2017.
[3] P.K. Farayibi. Finite element analysis of plastic recycling machine designed for production of thin filament coil. Nigerian Journal of Technology, 36(2):411–420, 2017. doi: 10.4314/njt.v36i2.13.
[4] S. Reddy and T. Raju. Design and development of mini plastic shredder machine. IOP Conference Series: Materials Science and Engineering, 455:012119, 2018. doi: 10.1088/1757-899x/455/1/012119.
[5] D. Atadious and O.J. Oyejide. Design and construction of a plastic shredder machine for recycling and management of plastic wastes. International Journal of Scientific & Engineering Research, 9(5):1379–1385, 2018.
[6] Y.M. Sonkhaskar, A. Sahu, A. Choubey, A. Singh, and R. Singhal. Design and development of a plastic bottle crusher. International Journal of Engineering Research & Technology, 3(10), 297–300, 2014.
[7] M.I. Faiyyaj, M.R. Pradip, B.J. Dhanaji, D.P. Chandrashekhar, and J.S. Shivaji. Design and development of plastic shredding machine. International Journal of Engineering Technology Science and Research, 4(10):733–737, 2017.
[8] S.B. Satish, J.S. Sandeep, B. Sreehari, and Y.M. Sonkhaskar. Designing of a portable bottle crushing machine. International Journal for Scientific Research & Development, 4(7):891–893, 2016.
[9] N.D. Jadhav, A. Patil, H. Lokhande, and D. Turambe. Development of plastic bottle shredding machine. International Journal of Waste Resources, 08(2):1000336, 2018. doi: 10.4172/2252-5211.1000336.
[10] T.A. Olukunle. Design consideration of a plastic shredder in recycling processes. International Journal of Industrial and Manufacturing Engineering, 10(11):1838–1841, 2016. doi: 10.5281/zenodo.1127242.
[11] A. Tegegne, A. Tsegaye, E. Ambaye, and R. Mebrhatu. Development of dual shaft multi blade waste plastic shredder for recycling purpose. International Journal of Research and Scientific Innovation, 6(1):49–55, 2019.
[12] J.M.A. Jaff, D.A. Abdulrahman, Z.O. Ali, K.O. Ali, and M.H. Hassan. Design and fabrication recycling of plastic system. International Journal of Scientific & Engineering Research, 7(5):1471–1486, 2016.
[13] S.Yadav, S. Thite, N. Mandhare, A. Pachupate, and A. Manedeshmukh. Design and development of plastic shredding machine. Journal of Applied Science and Computations, 6(4):21–25, 2019.
[14] S. Ravi. Utilization of upgraded shredder blade and recycling the waste plastic and rubber tyre. International Conference on Industrial Engineering and Operations Management, pages 3208–3216, Paris, France, 26-27 July 2018.
[15] M.F. Nasr and K.A. Yehia. Stress analysis of a shredder blade for cutting waste plastics. Journal of International Society for Science and Engineering, 1(1):9–12, 2019. doi: 10.21608/jisse.2019.20292.1017.
[16] C. Pedraza-Yepes, M.A. Pelegrina-Romero, and G.J. Pertuz-Martinez. Analysis by means of the finite element method of the blades of a PET shredder machine with variation of material and geometry. Contemporary Engineering Sciences, 11(83):4113–4120, 2018. doi: 10.12988/ces.2018.88370.
[17] A. Ikpe and O. Ikechukwu. Design of used PET bottles crushing machine for small scale industrial applications. International Journal of Engineering Technologies, 3(3):157–168, 2017. doi: 10.19072/ijet.327166.
[18] N.Y. Mahmood. Prediction of the optimum tensile – shear strength through the experimental results of similar and dissimilar spot welding joint. Archive of Mechanical Engineering, 67(2):197–210, 2020. doi: 10.24425/ame.2020.131690.
[19] R. Świercz, D. Oniszczuk-Świercz, and L. Dąbrowski. Electrical discharge machining of difficult to cut materials. Archive of Mechanical Engineering, 65(4):461–476, 2018. doi: 10.24425/ame.2018.125437.
[20] T.K. Nguyen, C.J.Hwang, and B.-K. Lee. Numerical investigation of warpage in insert injection-molded lightweight hybrid products. International Journal of Precision Engineering and Manufacturing, 18(2):187–195, 2017. doi: 10.1007/s12541-017-0024-5.
[21] T.K. Nguyen and B.-K. Lee. Investigation of processing parameters in micro-thermoforming of micro-structured polystyrene film. Journal of Mechanical Science and Technology, 33(12):5669–5675, 2019. doi: 10.1007/s12206-019-1109-0.
[22] T.K. Nguyen, A.-D. Pham, M.Q. Chau, X.C. Nguyen, H.A.D. Pham, M.H. Pham, T.P. Nguyen, and H.S. Nguyen. Development and characterization of a thermoforming apparatus using axiomatic design theory and Taguchi method. Journal of Mechanical Engineering Research and Developments, 43(6):255–268, 2020.
[23] R.O. Ebewele. Polymer Science and Technology. 1st edition. CRC Press, Boca Raton, 2000. doi: 10.1201/9781420057805.
Go to article

Authors and Affiliations

Trieu Khoa Nguyen
1
ORCID: ORCID
Minh Quang Chau
1
ORCID: ORCID
The-Can Do
2
Anh-Duc Pham
2
ORCID: ORCID

  1. Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam.
  2. Faculty of Mechanical Engineering, The University of Danang – University of Science and Technology, Da Nang City, Vietnam.
Download PDF Download RIS Download Bibtex

Abstract

In the previous study, we designed one personal rescue winch for high-rise building rescue. Its key requirement is to be small and light enough to suit users. In addition to using lightweight and reasonable materials as in the proposed winch design, in this study, we proceed to optimize the weight of one two-level gear train, which accounts for a large proportion of weight. The first stage is building a weight optimization problem model with seven independent variables, establishing one optimal algorithm, and investigating the variables by Matlab software. The other is replacing the web material of the gears and pinions with Aluminum 6061-T6 and optimizing their hole diameters and hole numbers through using Ansys software. The obtained result shows a significant weight reduction. Compared to the original design, the weight reduces by 10.21% and 52.40% after the first optimal and last stages, respectively.
Go to article

Bibliography

[1] J.E. Renton and P.T.M. Nott. Personal height rescue apparatus. Patent No. US9427607B2, 2016.
[2] J. Tremblay. Tower rescue emergency module. Patent No. US2013/0206505A1, 2013.
[3] V.T. Nguyen, K.A. Nguyen, and V.L. Nguyen. An improvement of a hydraulic selfclimbing formwork. Archive of Mechanical Engineering, 66(4):495–507, 2019. doi: 10.24425/ame.2019.131419.
[4] T.G. Duong, V.T. Nguyen, and T.T.D. Nguyen. Research on designing the individual rescue winch. Journal of Science and Technology in Civil Engineering, 15(1V):123–133, 2021. doi: 10.31814/stce.nuce2021-15(1V)-11.
[5] R.V. Rao and V.J. Savsani. Mechanical Design Optimization Using Advanced Optimization Techniques. Springer, 2012.
[6] M.W. Huang and J.S. Arora. Optimal design with discrete variables: some numerical experiments. International Journal for Numerical Methods in Engineering, 40:165–188, 1997. doi: 10.1002/(sici)1097-0207(19970115)40:1165::aid-nme60>3.0.co;2-i.
[7] J.S. Arora and M.W. Huang. Discrete structural optimization with commercially available sections. Structural Eng./Earthquake Eng., JSCE, 13(2):93–110, 1996. doi: 10.2208/jscej.1996.549_1.
[8] T. Yokota, T. Taguchi, and M. Gen. A solution method for optimal weight design problem of the gear using genetic algorithms. Computer & Industrial Engineering, 35(3-4):523–526, 1998. doi: 10.1016/s0360-8352(98)00149-1.
[9] H. Reddy, J.A.S. Kumar, and A.V. Hari Babu. Minimum weight optimization of a gear train by using genetic algorithm. International Journal of Current Engineering and Technology, 6(4):1119–1124, 2016.
[10] B. Mahiddini, T. Chettibi, K. Benfriha, and A. Aoussat. Optimum design of a spur gear using a two level optimization. Mechanika, 25(4): 304–312, 2019. doi: 10.5755/j01.mech.25.4.18994.
[11] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, 1983. doi: 10.1126/science.220.4598.671.
[12] P. Starry, E. Dupinet, and M. Mekhilef. A new way to optimize mechanical systems using simulated annealing. Transactions on the Built Environment, 2:569–583, 1993.
[13] V. Savsani, R.V. Rao, and D.P. Vakharia. Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms. Mechanism and Machine Theory, 45(3):531–541, 2010. doi: 10.1016/j.mechmachtheory.2009.10.010.
[14] N. Godwin Raja Ebenezer, S. Ramabalan, and S. Navaneethasanthakumar. Practical optimal design on two stage spur gears train using nature inspired algorithms. International Journal of Engineering and Advanced Technology, 8(6):4073–4081, 2019. doi: 10.35940/ijeat.F8638.088619.
[15] V. Pimpalte and S.C. Shilwant. Topology optimization of gears from two wheeler gear set using parametric study. IOSR Journal of Mechanical and Civil Engineering, 14(1):22–31, 2017. doi: 10.9790/1684-1401022231.
[16] R. Ramadani, A. Belsak, M. Kegl, J. Predan, and S. Pehan. Topology optimization based design of lightweight and low vibration gear bodies. International Journal of Simulation Modelling, 17(1):92–104, 2018. doi: 10.2507/IJSIMM17(1)419.
[17] A.J. Muminovic, A. Muminovic, E. Mesic, I. Saric, and N. Pervan. Spur gear tooth topology optimization: finding optimal shell thickness for spur gear tooth produced using additive manufacturing. TEM Journal, 8(3):788–794, 2019. doi: 10.18421/TEM83-13.
[18] ISO 54:1996, Cylindrical gears for general engineering and for heavy engineering – Modules. International Organization for Standardization, 1996.
[19] R.G. Budynas and J.K. Nisbett. Shigley’s Mechanical Engineering Design. 10th edition, McGraw-Hill, 2020.
Go to article

Authors and Affiliations

Truong Giang Duong
1
Van Tinh Nguyen
1
Tien Dung Nguyen
1

  1. Faculty of Mechanical Engineering, National University of Civil Engineering, Hanoi, Vietnam.
Download PDF Download RIS Download Bibtex

Abstract

The preservation of historical documents is a task that requires a multidisciplinary team. Mechanical engineering can make valuable contributions. Historical documents made of paper have unique characteristics that must be considered for their preservation and exhibition. Specially designed encasements have emerged as a solution to meet these requirements. In the present research, a comparative design study was carried out. The study comprises identifying the main functions of the encasements. Subsequently, it is analyzed how the capsules that appear in the literature have solved these functions. With the information obtained, three new encasements were designed for historical documents in Mexico. From the results and design experiences, some insights and design principles were obtained; these can be universally applied.
Go to article

Bibliography


[1] Instituto Nacional de Antropología e Historia. Web page of INAH. 1 October 2020. [On line]. Available: https://www.inah.gob.mx/.
[2] G. d. México. Archivo General de la Nación. [On line]. Available: https://www.gob.mx/agn. [Last acces: 10 nov 2020].
[3] W.K. Wilson and B.W. Forshee. Preservation of documents by lamination. Washington: National Bureau of Standards, 1959.
[4] A. Bansal, V. Kumari, A. Kumar and M. Singh. Securing the future of information: digitisation and preservation of documents in e-format. DESIDOC Bulletin of Information Technology, 25(1):19–26, 2005.
[5] F. Zhao. On choosing the digital document’s file format for long-term preservation. In IEEE 3rd International Conference on Communication Software and Networks, pages 370–372, Xi’an, China, 27–27 May, 2011. doi: 10.1109/ICCSN.2011.6013850.
[6] E.F. Hansen. Protection of objects from environmental deterioration by reducing their exposure to oxygen. In: S. Maekawa, editor, Oxygen-Free Museum Cases, chapter 2, pages 7–16. The Getty Conservation Institute, 1998.
[7] N. Valentín. Preservation of historic materials by using inert gases for biodeterioration control. In S. Maekawa, editor, Oxygen-Free Museum Cases, chapter 3, pages 17–30. The Getty Conservation Institute, 1998.
[8] R.H. Allen, R.J. Fijol, S. Szykman and R.D. Sriram. Representing the charters of freedom in a design repository: A case of study. In Proceedings of DETC 2001 ASME Design Engineering Technical Conference and Computers and Information in Engineering Conference, pages 593–599. Pittsburgh, PA, USA, 9-12 September, 2001. doi: 10.1115/DETC2001/CIE-21292.
[9] N. Stolow. Conservation and Exhibitions: Packing, Transport, Storage, and Environmental Considerations. Butterworth-Heinemann, London, 1987.
[10] N.Y. Iskander. Controlled-environment cases for the Royal Mummy Collection. In: S. Maekawa, editor, Oxygen-Free Museum Cases, chapter 5, pages 47–52. The Getty Conservation Institute, 1998.
[11] H. Kishan and S. Maekawa. Preservation of the original documents of the Constitution of India. In: S. Maekawa, editor, Oxygen-Free Museum Cases, chapter 6, pages 53–58. The Getty Conservation Institute, 1998.
[12] F.G. France and M. Toth. The Waldseemüller Map – A gift of Germany to the world. The Cartographic Journal, 50(3):286–292, 2013. doi: 10.1179/1743277413Y.0000000060.
[13] M.J. French and A.C. Ramirez-Reivich. Towards a comparative study of quarter-turn pneumatic valve actuators. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 210(6):543–552, 1996. doi: 10.1243/PIME_PROC_1996_210_153_02.
[14] G. Pahl, W. Beitz, J. Feldhusen and K.-H. Grote. Engineering Design. A Systematic Approach, 3rd edition. Springer, 2007.
[15] R.B. Stone and K.L.Wood. Development of a functional basis for design. Journal of Mechanical Design, 122(4):359–370, 2000. doi: 10.1115/1.1289637.
[16] B. Tyl, J. Legardeur, D. Millet, and F. Vallet. A comparative study of ideation mechanisms used in eco-innovation tools. Journal of Engineering Design, 25(10-12):325–345, 2014. doi: 10.1080/09544828.2014.992772.
[17] C.A. Mattson and A.E. Wood. Nine principles for design for the developing world as derived from the engineering literature. Journal of Mechanical Design, 135(12):121403, 2014. doi: 10.1115/1.4027984.
Go to article

Authors and Affiliations

Alejandro C. Ramirez-Reivich
1
Ma. Pilar Corona-Lira
1
Diego A. Zamora-Garcia
1
Anahí Velazquez-Silva
1
Vicente Borja
1

  1. School of Engineering, National Autonomous University of Mexico, Mexico City, Mexico
Download PDF Download RIS Download Bibtex

Abstract

In this paper a versatile analysis of the cycloidal gearbox vibrations and the resonance phenomenon was performed. The objective of this work was to show resonance phenomenon and vibrations study in the multibody dynamics model and in the finite element model of the cycloidal gearbox. The output torque was analyzed as a function of the external sleeves stiffness.
The results from the multibody dynamics model were verified in the finite element model using natural frequency with load stiffening, direct frequency response and direct transient response analyses.
It was shown that natural frequencies of the cycloidal gearbox undergo changes during motion of the mechanism. The gearbox passes through the thresholds of the increased vibration amplitudes, which lead to excessive wear of the external sleeves.
The analysis in the multibody dynamics model showed, that the increase in the external sleeves stiffness increases frequency of the second-order fluctuation at the output shaft. Small stiffness of the external sleeves guarantees lower frequency of the second order vibrations and higher peak-to-peak values of the output torque.
The performed research plays important role in the cycloidal gearbox design. This work shows gearbox dynamics problems which are associated with wear of the external sleeves.
Go to article

Bibliography

[1] M.Blagojević, M. Matejić, and N. Kostić. Dynamic behaviour of a two-stage cycloidal speed reducer of a new design concept. Technical Gazette, 25(Supplement 2):291–298, 2018. doi: 10.17559/TV-20160530144431.
[2] M. Wikło, R. Król, K. Olejarczyk, and K. Kołodziejczyk. Output torque ripple for a cycloidal gear train. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(21–22):7270–7281, 2019. doi: 10.1177/0954406219841656.
[3] N. Kumar, V. Kosse, and A. Oloyede. A new method to estimate effective elastic torsional compliance of single-stage Cycloidal drives. Mechanism and Machine Theory, 105:185–198, 2016. doi: 10.1016/j.mechmachtheory.2016.06.023.
[4] C.-F. Hsieh. The effect on dynamics of using a new transmission design for eccentric speed reducers. Mechanism and Machine Theory, 80:1–16, 2014. doi: 10.1016/j.mechmachtheory.2014.04.020.
[5] R. Król. Kinematics and dynamics of the two stage cycloidal gearbox. AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe, 19(6):523–527, 2018. doi: 10.24136/atest.2018.125.
[6] K-.S. Lin, K.-Y. Chan, and J.-J. Lee. Kinematic error analysis and tolerance allocation of cycloidal gear reducers. Mechanism and Machine Theory, 124:73–91, 2018. doi: 10.1016/j.mechmachtheory.2017.12.028.
[7] L. X. Xu, B. K. Chen, and C.Y. Li. Dynamic modelling and contact analysis of bearing-cycloid-pinwheel transmission mechanisms used in joint rotate vector reducers. Mechanism and Machine Theory, 137:432–458, 2019. doi: 10.1016/j.mechmachtheory.2019.03.035.
[8] A. Robison and A. Vacca. Multi-objective optimization of circular-toothed gerotors for kinematics and wear by genetic algorithm. Mechanism and Machine Theory, 128:150–168, 2018. doi: 10.1016/j.mechmachtheory.2018.05.011.
[9] R. Król, M. Wikło, K. Olejarczyk, K.Kołodziejczyk, and A. Zieja. Optimization of the one stage cycloidal gearbox as a non-linear least squares problem. In: T. Uhl (ed.) Advances in Mechanism and Machine Science. Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science, pages 1039–1048, Cracow, Poland, 15-18 July, 2019. doi: 10.1007/978-3-030-20131-9_103.
[10] R. Król. Updated software for the one stage cycloidal gearbox optimization (MATLAB scripts) (2.0). Zenodo, 2021. doi: 10.5281/zenodo.4737264.
[11] L. X. Xu and Y. H. Yang. Dynamic modeling and contact analysis of a cycloid-pin gear mechanism with a turning arm cylindrical roller bearing. Mechanism and Machine Theory, 104:327–349, 2016. doi: 10.1016/j.mechmachtheory.2016.06.018.
[12] M. Pfabe and C. Woernle. Reducing torsional vibrations by means of a kinematically driven flywheel – Theory and experiment. Mechanism and Machine Theory, 102:217–228, 2016. doi: 10.1016/j.mechmachtheory.2016.03.011.
[13] Y. Chen, X. Liang, and M. J. Zuo. Sparse time series modeling of the baseline vibration from a gearbox under time-varying speed condition. Mechanical Systems and Signal Processing, 134:106342, 2019. doi: 10.1016/j.ymssp.2019.106342.
[14] R. Yang, F. Li, Y. Zhou, and J. Xiang. Nonlinear dynamic analysis of a cycloidal ball planetary transmission considering tooth undercutting. Mechanism and Machine Theory, 145:103694, 2020. doi: 10.1016/j.mechmachtheory.2019.103694.
[15] W. He, B. Chen, N. Zeng, and Y. Zi. Sparsity-based signal extraction using dual Q-factors for gearbox fault detection. ISA Transactions, 79:147–160, 2018. doi: 10.1016/j.isatra.2018.05.009.
[16] D. Zhang and D. Yu. Multi-fault diagnosis of gearbox based on resonance-based signal sparse decomposition and comb filter. Measurement, 103:361–369, 2017. doi: 10.1016/j.measurement.2017.03.006.
[17] C.U. Mba, V. Makis, S. Marchesiello, A. Fasana, and L. Garibaldi. Condition monitoring and state classification of gearboxes using stochastic resonance and hidden Markov models. Measurement, 126:76–95, 2018. doi: 10.1016/j.measurement.2018.05.038.
[18] C. Wang, H. Li, J. Ou, R. Hu, S. Hu, and A. Liu. Identification of planetary gearbox weak compound fault based on parallel dual-parameter optimized resonance sparse decomposition and improved MOMEDA. Measurement, 165:108079, 2020. doi: 10.1016/j.measurement.2020.108079.
[19] W. Teng, X. Ding, H. Cheng, C. Han, Y. Liu, and H. Mu. Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform. Renewable Energy, 136:393–402, 2019. doi: 10.1016/j.renene.2018.12.094.
[20] Y. Lei, D. Han, J. Lin, and Z. He. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mechanical Systems and Signal Processing, 38(1):113–124, 2013. doi: 10.1016/j.ymssp.2012.06.021.
[21] L. Hong, Y. Qu, J. S. Dhupia, S. Sheng, Y. Tan, and Z. Zhou. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement. Mechanical Systems and Signal Processing, 94:14–32, 2017. doi: 10.1016/j.ymssp.2017.02.024.
[22] S. Schmidt, P. S. Heyns, and J. P. de Villiers. A novelty detection diagnostic methodology for gearboxes operating under fluctuating operating conditions using probabilistic techniques. Mechanical Systems and Signal Processing, 100:152–166, 2018. doi: 10.1016/j.ymssp.2017.07.032.
[23] T. Wang, Q. Han, F. Chu, and Z. Feng. Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: A review. Mechanical Systems and Signal Processing, 126:662–685, 2019. doi: 10.1016/j.ymssp.2019.02.051.
[24] S. Schmidt, P. S. Heyns, and K. C. Gryllias. A methodology using the spectral coherence and healthy historical data to perform gearbox fault diagnosis under varying operating conditions. Applied Acoustics, 158:107038, 2020. doi: 10.1016/j.apacoust.2019.107038.
[25] Y. Li, K. Feng, X. Liang, and M.J. Zuo. A fault diagnosis method for planetary gearboxes under non-stationary working conditions using improved Vold-Kalman filter and multi-scale sample entropy. Journal of Sound and Vibration, 439:271–286, 2019. doi: 10.1016/j.jsv.2018.09.054.
[26] S. Tong, Y. Huang, Y. Jiang, Y. Weng, Z. Tong, N. Tang, and F. Cong. The identification of gearbox vibration using the meshing impacts based demodulation technique. Journal of Sound and Vibration, 461:114879, 2019. doi: 10.1016/j.jsv.2019.114879.
[27] X. Chen and Z. Feng. Time-frequency space vector modulus analysis of motor current for planetary gearbox fault diagnosis under variable speed conditions. Mechanical Systems and Signal Processing, 121:636–654, 2019. doi: 10.1016/j.ymssp.2018.11.049.
[28] D.F. Plöger, P. Zech, and S. Rinderknecht. Vibration signature analysis of commodity planetary gearboxes. Mechanical Systems and Signal Processing, 119:255–265, 2019. doi: 10.1016/j.ymssp.2018.09.014.
[29] G. D’Elia, E. Mucchi, and M. Cocconcelli. On the identification of the angular position of gears for the diagnostics of planetary gearboxes. Mechanical Systems and Signal Processing, 83:305–320, 2017. doi: 10.1016/j.ymssp.2016.06.016.
[30] W. Żurowski, K. Olejarczyk, and R. Zaręba.Wear assessment of sliding sleeves in a single-stage cycloidal drive. Advances in Science and Technology Research Journal, 13(4):239–245, 2019. doi: 10.12913/22998624/114180.
[31] K. Olejarczyk, M. Wikło, K. Kołodziejczyk, R. Król, and K. Król. Theoretical and experimental verification of one stage cycloidal gearbox efficiency. In: T. Uhl (ed.) Advances in Mechanism and Machine Science. Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science, pages 1029–1038, Cracow, Poland, 15-18 July, 2019. doi: 10.1007/978-3-030-20131-9_102.
[32] M. Wikło, K. Olejarczyk, K. Kołodziejczyk, K. Król, and I. Komorska. Experimental vibration test of the cycloidal gearbox with different working conditions. Vibroengineering PROCEDIA, 13:24–27, 2017. doi: 10.21595/vp.2017.19073.
Go to article

Authors and Affiliations

Roman Król
1
ORCID: ORCID

  1. Kazimierz Pulaski University of Technology and Humanities in Radom, Faculty of Mechanical Engineering, Poland.
Download PDF Download RIS Download Bibtex

Abstract

Fused Deposition Modeling (FDM) components are commonly used for either prototypes or end products, mostly made of polymers. Polymers offer low frictional resistance to wear, so most of the engineering polymers find their increased usage in day-to-day industrial as well as domestic needs. The influence of many process controlling elements on the mechanical part properties is already being studied extensively, which demands the study of tribological characteristics like friction and wear rate under varying normal load (NL), sliding velocities (V) and part building orientations (PBO). The results showed a significant impact of the PBO and NL at various V on the tribological properties under various significant suitable sliding circumstances. Cracks were formed in the cylindrical tribometer specimens of Acrylonitrile butadiene styrene (ABS) fabricated at low PBO when operated at high NL, and V. Vertical PBO to the FDM building platform in the layers form where a number of inter-layers can bear maximum NL at higher values of V resulted in uniform wear and low frictions. Friction was noticed very low at minimum NL when PBO was 0° (horizontal) and 90° (vertical), but increased at high NL between PBO of 15° to 60°. The FDM parts improved compared to those from conventional manufacturing processes.
Go to article

Bibliography

[1] D. Ahn, J.-H. Kweon, S. Kwon, J. Song, and S. Lee. Representation of surface roughness in fused deposition modeling. Journal of Materials Processing Technology, 209(15-16):5593–5600, 2009. doi: 10.1016/j.jmatprotec.2009.05.016.
[2] C.K. Chua, S.H. Teh, and R.K.L. Gay. Rapid prototyping versus virtual prototyping in product design and manufacturing. The International Journal of Advanced Manufacturing Technology, 15(8):597–603, 1999. doi: 10.1007/s001700050107.
[3] W. Zeng, F. Lin, T. Shi, R. Zhang, Y. Nian, J. Ruan, and T Zhou. Fused deposition modelling of an auricle framework for microtia reconstruction based on CT images. Rapid Prototyping Journal, 15(5):280–284, 2008. doi: 10.1108/13552540810907947.
[4] S.H. Choi and H.H. Cheung. Multi-material virtual prototyping for product development and biomedical engineering. Computers in Industry, 58(5):438–452, 2007. doi: 10.1016/j.compind.2006.09.002.
[5] E.C. Santos, M. Shiomi, K. Osakada, and T. Laoui. Rapid manufacturing of metal components by laser forming. International Journal of Machine Tools and Manufacture, 46(12-13):1459–1468, 2006. doi: 10.1016/j.ijmachtools.2005.09.005.
[6] N. Oxman. Variable property rapid prototyping. Virtual and Physical Prototyping, 6(1):3–31, 2011. doi: 10.1080/17452759.2011.558588.
[7] A. Bellini, L. Shor, and S.I. Guceri. New developments in fused deposition modeling of ceramics. Rapid Prototyping Journal, 11(4):214–220, 2005. doi: 10.1108/13552540510612901.
[8] K.D. Dearn, T.J. Hoskins, D.G. Petrov, S.C. Reynolds, and R. Banks. Applications of dry film lubricants for polymer gears. Wear, 298-299:99–108, 2013. doi: 10.1016/j.wear.2012.11.003.
[9] S.E. Franklin. Wear experiments with selected engineering polymers and polymer composites under dry reciprocating sliding conditions. Wear, 251(1-12):1591–1598, 2001. doi: 10.1016/S0043-1648(01)00795-5.
[10] P.V. Vasconcelos, F.J. Lino, A.M. Baptista, and R.J. Neto. Tribological behaviour of epoxy based composites for rapid tooling. Wear, 260(1-2):30–39, 2006. doi: 10.1016/j.wear.2004.12.030.
[11] B.-B. Jia, T.-S. Li, X.-J. Liu, and P.-H. Cong. Tribological behaviors of several polymer–polymer sliding combinations under dry friction and oil-lubricated conditions. Wear, 262(11-12):1353–1359, 2007. doi: 10.1016/j.wear.2007.01.011.
[12] A. Equbal, A.K. Sood, V. Toppo, R.K. Ohdar, and S.S. Mahapatra. Prediction and analysis of sliding wear performance of fused deposition modelling-processed ABS plastic parts. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 224(12):1261–1271, 2010. doi: 10.1243/13506501JET835.
[13] A. Pereira, J. Pérez, J. Diéguez, G. Peláez, and J. Ares. Design and manufacture of casting pattern plates by rapid tooling. Archives of Material Science, 29(1-2):63–67, 2008.
[14] Q. Liu, M.C. Leu, and S.M. Schmitt. Rapid prototyping in dentistry: technology and application. The International Journal of Advanced Manufacturing Technology, 29(3):317–335, 2006. doi: 10.1007/s00170-005-2523-2.
[15] T. Brajlih, B. Valentan, J. Balic, and I. Drstvensek. Speed and accuracy evaluation of additive manufacturing machines. Rapid Prototyping Journal, 17(1):64–75, 2011. doi: 10.1108/13552541111098644.
[16] Y. Yan, S. Li, R. Zhang, F. Lin, R. Wu, Q. Lu, Z. Xiong, and X. Wang. Rapid prototyping and manufacturing technology: principle, representative technics, applications, and development trends. Tsinghua Science and Technology, 14(S1):1–12, 2009. doi: 10.1016/S1007-0214(09)70059-8.
[17] P. Rochus, J.-Y. Plesseria, M.Van Elsen, J.-P. Kruth, R. Carrus, and T. Dormal. New applications of rapid prototyping and rapid manufacturing (RP/RM) technologies for space instrumentation. Acta Astronautica, 61(1-6):352–359, 2007. doi: 10.1016/j.actaastro.2007.01.004.
[18] Z. Rymuza, Z. Kusznierewicz, T. Solarski, M. Kwacz, S.A. Chizhik, and A.V. Goldade. Static friction and adhesion in polymer–polymer microbearings. Wear, 238(1):56–69, 2000. doi: 10.1016/S0043-1648(99)00341-5.
[19] M.M. Hanon, Y. Alshammas, and L. Zsidai. Effect of print orientation and bronze existence on tribological and mechanical properties of 3D-printed bronze/PLA composite. The International Journal of Advanced Manufacturing Technology, 108:553–570, 2020. doi: 10.1007/s00170-020-05391-x.
[20] M.N.M. Norani M.I.H.C. Abdullah, M.F.B. Abdollah, H. Amiruddin, F.R. Ramli, and N. Tamaldin. Tribological analysis of a 3D-printed internal triangular flip ABS pin during running-in stage. Jurnal Tribologi, 27:42–56, 2020.
[21] G.S. Balan, V.S. Kumar, S. Rajaram, and M. Ravichandran. Investigation on water absorption and wear characteristics of waste plastics and seashell powder reinforced polymer composite. Jurnal Tribologi, 27:57–70, 2020.
[22] M. Yunus and M.S. Alsoufi. Effect of raster inclinations and part positions on mechanical properties, surface roughness and manufacturing price of printed parts produced by fused deposition method. Journal of Mechanical Engineering and Sciences, 14(4):7416–7423, 2020. doi: 10.15282/jmes.14.4.2020.10.0584.
[23] M. Yunus and M.S. Alsoufi. Experimental investigations into the mechanical, tribological, and corrosion properties of hybrid polymer matrix composites comprising ceramic reinforcement for biomedical applications. International Journal of Biomaterials, 2018:ID 9283291, 2018. doi: 10.1155/2018/9283291.
[24] P.K. Gurrala and S.P. Regalla. Friction and wear behavior of ABS polymer parts made by fused deposition modeling (FDM). Technology Letters, 1(12):13–17, 2014.
Go to article

Authors and Affiliations

Turki Alamro
1
ORCID: ORCID
Mohammed Yunus
1
ORCID: ORCID
Rami Alfattani
1
ORCID: ORCID
Ibrahim A. Alnaser
2

  1. Department of Mechanical Engineering, Umm Al-Qura University, Makkah City, Saudi Arabia.
  2. Mechanical Engineering Department, King Saud University, Riyadh, Saudi Arabia.
Download PDF Download RIS Download Bibtex

Abstract

The article presents the study results of electropulse grinding of amber in aqueous and alcoholic media at different amounts of supplied energy. Description of the electropulse grinding laboratory installation, the mechanism of the destruction process of amber particles and methods of statistical processing of experimental data are given. It was established that alcohol medium has a greater impact on the efficiency of crushing than water. Thus, under the same conditions of energy supply, in the aqueous medium the weighted average particle size of amber was 601:6±688:9 μm, and in an alcohol medium – 368:0±269:6 μm. In an aqueous medium, the particle size decreased to 1/13.6 of raw sample, and in an alcoholic medium to 1/22.3 of raw sample compared to the initial size of raw amber. We found that in the aqueous medium the ratio of large to small fractions is mainly the same with the coefficient of alignment of particles with a size of 1.09. In an alcoholic medium, this ratio significantly differs, with the coefficient of alignment of amber particles of a size of 1.67 with the amount of supplied energy of 125 kJ.
Go to article

Bibliography

[1] Y.M. Wang, M.X. Yang, and T. You. Latest progress of pressed amber. Journal of Gems & Gemmology, 14(1):38–45, 2012.
[2] N.V. Martynov, V.N. Dobromirov, and D.V. Avramov. Electro-hydraulic disintegration technology for diamond-bearing rocks. Ore Dressing, 2020(1):8–14. 2020. doi: 10.17580/or.2020.01.02 (in Russian).
[3] U. Andres. Development and prospects of mineral liberation by electrical pulses. International Journal of Mineral Processing, 97(1-4):31–38. 2010. doi: 10.1016/j.minpro.2010.07.004.
[4] D. Yan, D. Bian, J. Zhao, and S. Niu. Study of the electrical characteristics, shock-wave pressure characteristics, and attenuation law based on pulse discharge in water. Shock and Vibration, 2016:6412309, 2016. doi: 10.1155/2016/6412309.
[5] T. Krytska and T. Lytvynenko. Electropulse crushing of high-purity crystalline silicon in an aqueous medium. Metallurgy, 1(35):54–57, 2016. (in Ukrainian).
[6] N. Martynov, D.Avramov, G.Kozlov, and M. Pushkarev. Pulsed electric discharge in an aqueous medium for processing raw amber. Journal of Physics: Conference Series, 1614(1):012060, 2020. doi: 10.1088/1742-6596/1614/1/012060.
[7] X. Zhang, B. Lin, C. Zhu, Y. Wang, C. Guo, and J. Kong. Improvement of the electrical disintegration of coal sample with different concentrations of NaCl solution. Fuel, 222:695–704, 2018. doi: 10.1016/j.fuel.2018.02.151.
[8] A.P. Smirnov, V.G. Zhekul, E.I. Taftai, O.V. Khvoshchan, and I. S. Shvets. Effect of parameters of liquids on amplitudes of pressure waves generated by electric discharge. Surface Engineering and Applied Electrochemistry, 55(1):84–88, 2019. doi: 10.3103/S1068375519010149.
[9] V. Chornyi, T. Mysiura, N. Popova, and V. Zavialov. Solvent selection for extraction of target components from amber. Journal of Chemistry and Technologies, 29(1):92–99, 2020, doi: 10.15421/082106. (in Ukrainian).
[10] P.A. Kouzov. Fundamentals of disperse composition analysis of industrial dusts and ground materials. Chemistry, 1987. (in Russian).
[11] A.R. Demidov and S.E. Chirikov. Grinding methods and methods for evaluating their effectiveness. Report of Central Institute of Scientific and Technical Information and Technical and Economic Research of the Committee of Procurements of the USSR, Moscow, 1969. (in Russian).
[12] G.A. Egorov, V.T. Linnichenko, E.M. Melnikov, and T. P. Petrenko. Workshop on technology of flour, cereals and compound feed. Agropromizdat, Moscow, 1991. (in Russian).
[13] B.P. Demidovich and I.A. Maron. Fundamentals of Computational Mathematics. Science, Moscow, 1970. (in Russian).
[14] H. M. Bartenev. The statistical nature of strength and discrete levels of strength and durability of polymers. In: Strength and degradation mechanism of polymers, pages 243–261. Chemisty, 1984. (in Russian).
[15] W. Zuo, X. Li, F. Shi, R. Deng,W. Yin, B. Guo, and J. Ku. Effect of high voltage pulse treatment on the surface chemistry and floatability of chalcopyrite and pyrite. Minerals Engineering, 147:106170, 2020. doi: 10.1016/j.mineng.2019.106170.
Go to article

Authors and Affiliations

Valentyn Chornyi
1
ORCID: ORCID
Yevgen Kharchenko
1
ORCID: ORCID
Taras Mysiura
1
ORCID: ORCID
Nataliia Popova
1
ORCID: ORCID
Volodymyr Zavialov
1
ORCID: ORCID

  1. Institute of Food Technologies, National University of Food Technologies, Kyiv, Ukraine.

Instructions for authors

About the Journal
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.

Archive of Mechanical Engineering is an Open Access journal. The journal does not have article processing charges (APCs) nor article submission charges.

Original high quality papers on the following topics are preferred:

  • Mechanics of Solids and Structures,
  • Fluid Dynamics,
  • Thermodynamics, Heat Transfer and Combustion,
  • Machine Design,
  • Computational Methods in Mechanical Engineering,
  • Robotics, Automation and Control,
  • Mechatronics and Micro-mechanical Systems,
  • Aeronautics and Aerospace Engineering,
  • Heat and Power Engineering.

All submissions to the AME should be made electronically via Editorial System - an online submission and peer review system at: https://www.editorialsystem.com/ame

More detailed instructions for Authors can be found there.

This page uses 'cookies'. Learn more