Nauki Techniczne

Chemical and Process Engineering


Chemical and Process Engineering | 2019 | vol. 40 | No 4 |


The paper presents the impact of carrageenan addition on rheological characterisation of some hydrocolloid aqueous solutions during stirring with rotational speed changes. Carboxymethyl cellulose, guar gum and xanthan gum were used. Measurements were conducted in a vessel equipped with an anchor stirrer under rotational speed increase and decrease conditions, equivalent to a hysteresis loop rheological test. Rheological parameters were calculated using the power-law equation. It was found that a carrageenan addition generally causes a reduction of liquid apparent viscosity and time-dependent rheological behaviour intensification, with some exceptions.

Przejdź do artykułu

Autorzy i Afiliacje

Krzysztof Neupauer
Maciej Kabziński


The aim of the presented research was to test different carbon supports, such as graphene oxide (GO), graphene oxide modified with ammonia (N-GO), and reduced graphene oxide (rGO) for catalysts used in a low-temperature fuel cell, specifically a proton exchange membrane fuel cell (PEMFC). Modification of the carbon supports should lead to different catalytic activity in the fuel cell. Reduction of GO leads to partial removal of oxygen groups from GO, forming rGO. Modification of GO with ammonia results in an enrichment of GO structure with nitrogen. A thorough analysis of the used supports was carried out, using various analytical techniques, such as FTIR spectroscopy and thermogravimetric (TGA) analysis. Palladium and platinum catalysts deposited on these supports were produced and used for the oxygen reduction reaction (ORR). Catalytic activity tests of the prepared catalysts were carried out in a home-made direct formic acid fuel cell (DFAFC). The tests showed that the enrichment of the GO structure with nitrogen caused an increase in the catalytic activity, especially for the palladium catalyst. However, reduction of GO resulted in catalysts with higher activity and the highest catalytic activity was demonstrated by Pt/rGO, because platinum is the most catalytically active metal for ORR. The obtained results may be significant for low-temperature fuel cell technology, because they show that a simple modification of a carbon support may lead to a significant increase of the catalyst activity. This could be useful especially in lowering the cost of fuel cells, which is an important factor, because thousands of fuel cells running on hydrogen are already in use in commercial vehicles, forklifts, and backup power units worldwide. Another method used for lowering the price of current fuel cells can involve developing new clean and cheap production methods of the fuel, i.e. hydrogen. One of them employs catalytic processes, where carbon materials can be also used as a support and it is necessary to know how they can influence catalytic activity.

Przejdź do artykułu

Autorzy i Afiliacje

Zuzanna Bojarska
Marta Mazurkiewicz-Pawlicka
Łukasz Makowski


Aflexible fractal-like aggregate modelwas used to study deformation and fragmentation of the structure of fractal-like aggregates via their impaction with rigid rough surface.Aggregateswere conveyed one at the time towards a surface under vacuum conditions. The number of primary particles remaining in each fragment, ratio of average fragment radius of gyration after impaction to the average fragment initial radius of gyration and ratio of average coordination number to the initial coordination number were monitored for each individual aggregate. Results demonstrate that depending on the impact velocity, the fractal dimension of the aggregate, the strength of bonds between primary particles, the stiffness of the aggregate structure and the diameter of primary particle composing an aggregate, restructuring or breakage of the aggregate occur. Moreover, in the analysis of the ratio of coordination number of aggregates after impaction to the initial coordination number, three regimes were distinguished: first no deformation at low impact velocities, second restructurisation regime and finally fragmentation regime where partial or total fragmentation of aggregates was observed.

Przejdź do artykułu

Autorzy i Afiliacje

Łukasz Żywczyk
Arkadiusz Moskal
Rafał Przekop


The effect of emulsifier volume on emulsion system stability of plant origin being the basis of diet supplements for animals in winter season was analyzed. For this purpose, measurements of the backscattered light intensity as the function of the measuring cell height were conducted with a Turbiscan LAB optical analyzer. System stability was analyzed on the basis of Turbiscan Stability Index values. A Helos laser analyzer and a Nikon Eclipse E400 POL optical microscope were used to investigate drop size distribution and analyze microscopic pictures. It was shown that emulsion with 10% (w/w) of the emulsifier was the most stable one.

Przejdź do artykułu

Autorzy i Afiliacje

Anna Zalewska
Joanna Kowalik
Ireneusz Grubecki


Composite scaffolds with increased hydrophilicity were prepared for cancellous bone regeneration by the freeze-extraction method. As a construction material, a poly–L–lactide (PLLA) was applied. As a hydrophilic, modifying agent a methacrylic acid copolymer, trade name Eudragit®, was used. Apreliminary investigation and optimization of the processwere performed. For the obtained scaffolds, regression equations determining the effect of: Eudragit®E100/PLLA weight ratio; volume ratio of methanol (porophore)/PLLA solution in dioxane on interconnected porosity and mass absorbability of obtained implants were calculated.

Przejdź do artykułu

Autorzy i Afiliacje

Monika Budnicka
Agnieszka Gadomska-Gajadhur
Paweł Ruśkowski

Instrukcja dla autorów

All manuscripts submitted for publication in Chemical and Process Engineering must comprise a description of original research that has neither been published nor submitted for publication elsewhere.

The content, aim and scope of the proposals should comply with the main subject of the journal, i.e. they should deal with mathematical modelling and/or experimental investigations on momentum, heat and mass transfer, unit processes and operations, integrated processes, biochemical engineering, statics and kinetics of chemical reactions. The experiments and modelling may cover different scales and processes ranging from the molecular phenomena up to production systems. The journal language is grammatically correct British English.

Chemical and Process Engineering publishes: i) full text research articles, ii) invited reviews, iii) letters to the editor and iv) short communications, aiming at important new results and/or applications. Each of the publication form is peer-reviewed by at least two independent referees.  

Submission of materials for publication

The manuscripts are submitted for publication via e-mail address When writing the manuscript, authors should preferably use the template for articles. 

Proposals of a paper should be uploaded using the Internet site of the journal and should contain:

  • a manuscript file in Word format (*.doc, *.docx),
  • the manuscript mirror in PDF format,
  • all graphical figuresin separate graphics files.

In the following paragraphthe general guidelines for the manuscript preparation are presented.

Manuscript outline

        1. Header details
          1. Title of paper
          2. Names (first name and further initials) and surnames of authors
          3. Institution(s) (affiliation)
          4. Address(es) of authors
          5. Information about the corresponding author; academic title, name and surname, email address, address for correspondence
        2. Abstract – should contain a short summary of the proposed paper. In the maximum of 200 words the authors should present the main assumptions, results and conclusions drawn from the presented study.
        3. Keywords– Up to 5 characteristic keyword items should be provided.
        4. Text
          1. Introduction. In this part, description of motivation for the study and formulation of the scientific problem should be included and supported by a concise review of recent literature.
          2. Main text. It should contain all important elements of the scientific investigations, such as presentation of experimental rigs, mathematical models, results and their discussion. This part may be divided into subchapters.
          3. Conclusions. The major conclusions can be put forward in concise style in a separate chapter. Presentation of conclusions from the reported research work accompanied by a short commentary is also acceptable.
          4. Figures: drawings, diagrams and photographs can be in colour and should be located in appropriate places in the manuscript text according. Their graphical form should be of vector or raster type with the minimum resolution of 900 dpi. In addition, separate files containing each of the drawings, graphs and photos should be uploaded onto the journal Web site in one of the following formats: bmp, gif, tiff, jpg, eps. Due to rigid editorial reasons, graphical elements created within MS Word and Excel are not acceptable. The final length of figures should be intended typically for 8 cm (single column) or 16 cm in special cases of rich-detail figures. The basic font size of letters in figures should be at least 10 pts after adjusting graphs to the final length.  

          Figures: drawings, diagrams and photographs should be in gray scale. In case of coloured graphs or photo an additional payment of 300 PLN (72 €) per 1 page containing coloured figures on both sides, or 150 PLN (36 €) per page containing coloured figures on one side will be required.

          Tables should be made according to the format shown in the template.

        5. All figures and tables should be numbered and provided with appropriate title and legend, if necessary. They have to be properly referenced to and commented in the text of the manuscript.

        6. List of symbols should be accompanied by their units
        7. Acknowledgements may be included before the list of literature references
        8. Literature citations


The method of quoting literature source in the manuscript depends on the number of its authors:

  • single author – their surname and year of publication should be given, e.g. Marquardt (1996) or (Marquardt, 1996),
  • two authors – the two surnames separated by the conjunction “and” with the publication year should be given, e.g. Charpentier and McKenna (2004) or (Charpentier and McKenna, 2004),
  • three and more authors – the surname of the first author followed by the abbreviation “et al.” and year of publication should be given, e.g. Bird et al. (1960) or (Bird et al., 1960).

In the case of citing more sources in one bracket, they should be listed in alphabetical order using semicolon for separation, e.g. (Bird et al., 1960; Charpentier and McKenna, 2004; Marquardt, 1996). Should more citations of the same author(s) and year appear in the manuscript then letters “a, b, c, ...” should be successively applied after the publication year.

Bibliographic data of the quoted literature should be arranged at the end of the manuscript text in alphabetic order of surnames of the first author. It is obligatory to indicate the DOI number of those literature items, which have the numbers already assigned. Journal titles should be specified by typingtheir right abbreviationsor, in case of doubts, according to the List of Title Word Abbreviations available at

Examples of citation for:

Charpentier J. C., McKenna T. F., 2004.Managing complex systems: some trends for the future of chemical and process engineering. Chem. Eng. Sci., 59, 1617-1640. DOI: 10.1016/j.ces.2004.01.044.

Information from books (we suggest adding the page numbers where the quoted information can be found)
Bird R. B., Stewart W.E., Lightfood E.N., 2002. Transport Phenomena. 2nd edition, Wiley, New York, 415-421.

Chapters in books
Hanjalić K., Jakirlić S., 2002. Second-moment turbulence closure modelling, In: Launder B.E., Sandham N.D. (Eds.), Closure strategies for turbulent and transitional flows. Cambridge University Press, Cambridge, 47-101.

ten Cate A., Bermingham S.K., Derksen J.J., Kramer H.M.J., 2000. Compartmental modeling of an 1100L DTB crystallizer based on Large Eddy flow simulation. 10th European Conference on Mixing. Delft, the Netherlands, 2-5 July 2000, 255-264.

Suggested Reviewers

Authors are kindly requested to include a list of 3 potential reviewers for their manuscript, with complete contact information. These reviewers must not be from the authors' institutions, or have co-authored with authors of the manuscript.


Starting from 2014 a principle of publishing articles against payment is introduced, assuming non-profit making editorial office. According to the principle authors or institutions employing them, will have to cover the expenses amounting to 40 PLN (or 10 €) per printed page. The above amount will be used to supplement the limited financial means received from the Polish Academy of Sciences for the editorial and publishing; and in particular to increase the capacity of the next CPE volumes and to proofread the linguistic correctness of the articles. The method of payment will be indicated in an invoice sent to the authors or institutions after acceptance of their manuscripts to be published. In justifiable cases presented in writing, the editorial staff may decide to relieve authors from basic payment, either partially or fully. All correspondence should be sent to Executive Editor: dr hab. inż. Paweł Sobieszuk, email address:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji