Power characteristics of inline rotor-stators with different head designs

Journal title

Chemical and Process Engineering




vol. 42


No 2


Hannam, Alex : Loughborough University, School of Chemical Engineering, Loughborough LE11 3TT, UK ; Sparks, Trevor : Independent Consultant ; Özcan-Taskın, N. Gül : Loughborough University, School of Chemical Engineering, Loughborough LE11 3TT, UK 2



in-line rotor-stators ; power characteristics ; rotor-stator design

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences Committee of Chemical and Process Engineering


Atiemo-Obeng V.A., Calabrese R.V., 2004. Rotor–stator mixing devices, In: Paul E.L., Atiemo-Obeng V.A., Kresta,S.M. (Eds.), Handbook of industrial mixing. John Wiley & Sons, Inc., Hoboken, NJ, USA, 479–505. DOI: 10.1002/0471451452.ch8.

Baldyga J., Kowalski A.J., Cooke M., Jasinska M., 2007. Investigation of micromixing in a rotor-stator mixer. Chem. Process Eng., 28 (4), 867-877.

Carrillo De Hert S., Rodgers T.L., 2017. Continuous, recycle and batch emulsification kinetics using a high-shear mixer. Chem. Eng. Sci., 167, 265–277. DOI: 10.1016/j.ces.2017.04.020.

Cooke M., Rodgers T.L., Kowalski A.J., 2011. Power consumption characteristics of an in-line silverson high shear mixer. AIChE J., 58, 1683-1692. DOI: 10.1002/aic.12703.

Doucet L., Ascanio G., Tanguy P.A., 2005. Hydrodynamics characterisation of rotor-stator mixer with viscous fluids. Chem. Eng. Res. Des., 83, 1186-1195. DOI: 10.1205/cherd.04254.

Håkansson, A., Chaudhry, Z., Innings, F., 2016. Model emulsions to study the mechanism of industrial mayonnaise emulsification. Food Bioprod. Process., 98, 189–195. DOI: 10.1016/j.fbp.2016.01.011.

Hall S., Cooke M., Pacek A.W., Kowalski A J., Rothman D., 2011. Scaling up of silverson rotor–stator mixers. Can. J. Chem. Eng., 89, 1040-1050. DOI: 10.1002/cjce.20556.

Kamaly S.W., Tarleton A.C., Özcan-Taskın N.G., 2017. Dispersion of clusters of nanoscale silica particles using batch rotor-stators. Adv. Powder Technol., 28, 2357-2365. DOI: 10.1016/j.apt.2017.06.017.

Meeuwse M., van der Schaaf J., Kuster B. F. M., Schouten,J. C., 2010. Gas–liquid mass transfer in a rotor–stator spinning disc reactor. Chem. Eng. Sci., 65, 466-471. DOI: 10.1016/j.ces.2009.06.006.

Özcan-Taskın G., Kubicki D., Padron G., 2011. Power and flow characteristics of three rotor-stator heads. Can. J. Chem. Eng., 89, 1005-1017. DOI: 10.1002/cjce.20553.

Özcan-Taskin G., Padron G., Voelkel A., 2009. Effect of particle type on the mechanisms of break up of nanoscale particle clusters. Chem. Eng. Res. Des., 87, 468-473. DOI: 10.1016/j.cherd.2008.12.012.

Özcan-Taskin N.G., Padron G.A., Kubicki D., 2016. Comparative performance of in-line rotor-stators for deagglomeration processes. Chem. Eng. Sci., 156, 186–196. DOI: 10.1016/j.ces.2016.09.023.

Padron G.A., 2005. Effect of surfactants on drop size distribution in a batch, rotor-stator mixer. PhD Thesis, University of Maryland.

Padron G.A., Eagles W.P., Ozcan-Taskin G.N., McLeod G., Xie L., 2008. Effect of particle properties on the breakup of nanoparticle clusters using an in-line rotor-stator. J. Dispersion Sci. Technol., 29, 4, 580-586. DOI: 10.1080/01932690701729237.

Padron G., 2001. Measurement and comparison of power draw in batch rotor-stator mixers. MSc Thesis, Department of Chemical Engineering, University of Maryland.

Padron G.A., Özcan-Taskın N.G., 2018. Particle de-agglomeration with an in-line rotor-stator mixer at different solids loadings and viscosities. Chem. Eng. Res. Des., 32, 913-921. DOI: 10.1016/j.cherd.2018.01.041.

Qin H., Xu Q., Li W., Dang,X., Han Y., Lei K., Zhou L., Zhang J., 2017. Effect of stator geometry on the emulsification and extraction in the inline single-row blade-screen high shear mixer. Ind. Eng. Chem. Res., 56, 9376-9388. DOI: 10.1021/acs.iecr.7b01362.

Schönstedt B., Jacob H., Schilde C., Kwade A., 2015. Scale-up of the power draw of inline-rotor–stator mixers with high throughput. Chem. Eng. Res. Des., 93, 12-20. DOI: 10.1016/j.cherd.2014.04.004.

Sparks T., 1996. Fluid mixing in rotor–stators. PhD Thesis, Cranfield University, Cranfield, UK.

Utomo A., Baker M., Pacek A., 2009. The effect of stator geometry on the flow pattern and energy dissipation rate in a rotor–stator mixer. Chem. Eng. Res. Des., 87, 533–542. DOI: 10.1016/j.cherd.2008.12.011.

van Kouwen E.R., Winkenwerder W., Brentzel Z., Joyce B., Pagano T., Jovic S., Bargeman G., and van der Schaaf J., 2021. The mixing sensitivity of toluene and ethylbenzene sulfonation using fuming sulfuric acid studied in a rotor-stator spinning disc reactor. Chem. Eng. Process., 160, 108303. DOI: 10.1016/j.cep.2021.108303.

Vashisth V., Nigam K.D.P., Kumar V., 2021. Design and development of high shear mixers: Fundamentals, applications and recent progress. Chem. Eng. Sci., 232, 116296. DOI: 10.1016/j.ces.2020.116296.

Yang L., Li W., Guo J., Li W., Wang B., Zhang M., Zhang J., 2020. Effects of rotor and stator geometry on dissolution process and power consumption in jet-flow high shear mixers. Front. Chem. Sci. Eng., 15, 384–398. DOI: 10.1007/s11705-020-1928-7.






DOI: 10.24425/cpe.2021.137343

Editorial Board

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766