MIMO Beam Selection in 5G Using Neural Networks

Journal title

International Journal of Electronics and Telecommunications




vol. 67


No 4


Ruseckas, Julius : Baltic Institute of Advanced Technology, Vilnius, Lithuania ; Molis, Gediminas : Baltic Institute of Advanced Technology, Vilnius, Lithuania ; Bogucka, Hanna : Institute of Radiocommunications, Poznan University of Technology, Poznan, Poland



5G ; context information ; MIMO beam orientation ; machine learning ; neural networks

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences Committee of Electronics and Telecommunications


[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, ”What will 5G be?”, IEEE Journal on Selected Areas in Communications 32 (6), 1065–1082, 2014.
[2] J. Liu, J. Wan, D. Jia, B. Zeng, D. Li, C. Hsu, and H. Chen, ”Highefficiency urban traffic management in context-aware computing and 5g communication”, IEEE Communications Magazine 55(1), 34–40, 2017.
[3] X. Cheng, L. Fang, L. Yang, and S. Cui, ”Mobile big data: The fuel for data-driven wireless”, IEEE Internet of Things Journal 4(5), 1489–1516, 2017.
[4] K. Zheng, Z. Yang, K. Zhang, P. Chatzimisios, K. Yang, and W. Xiang, ”Big data-driven optimization for mobile networks toward 5G”, IEEE Network 30, 44–51, 201).
[5] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, ”Machine learning paradigms for next-generation wireless networks”, IEEE Wireless Communications 24, 98–105, 2017.
[6] W. B. Abbas and M. Zorzi, ”Context information based initial cell search for millimeter wave 5G cellular networks”, 2016 European Conference on Networks and Communications (EuCNC), pp. 111–116, 2016.
[7] I. Filippini, V. Sciancalepore, F. Devoti, and A. Capone, ”Fast Cell Discovery in mm-Wave 5G Networks with Context Information”, IEEE Transactions on Mobile Computing 17(7), 1538–1552, 2018.
[8] E. Ali, M. Ismail, R. Nordin, and N. F. Abdulah, ”Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research”, Frontiers of Information Technology & Electronic Engineering 18(6), 753–772, 2017.
[9] A. Habbal, S. I. Goudar, and S. Hassan, ”A Context-aware Radio Access Technology selection mechanism in 5G mobile network for smart city applications”, Journal of Network and Computer Applications 135, 97– 107, ISSN 1084-8045, 2019.
[10] C.-L. Hwang and K. Yoon, ”Multiple Attribute Decision Making, Methods and Applications A State-of-the-Art Survey”, ISBN 978-3-642- 48318-9, Springer-Verlag, Berlin, 1981.
[11] A. Klautau, P. Batista, N. Gonzalez-Prelcic, Y. Wang and R. W. Heath, ”5G MIMO Data for Machine Learning: Application to Beam-Selection using Deep Learning” in 2018 Information Theory and Applications Workshop (ITA), 2018.
[12] NR Physical Layer Procedures for Control, Standard 3GPP, TS 38.213 V16.5.0, 2021. [13] I. Aykin and M. Krunz, ”Efficient beam sweeping algorithms and initial access protocols for millimeter-wave networks”, IEEE Trans. Wireless Commun., 19(4), 2504–2514 2020.
[14] S. Tomasin, C. Mazzucco, D. De Donno and F. Cappellaro, ”Beam- Sweeping Design Based on Nearest Users Position and Beam in 5G mmWave Networks”, IEEE Access 8, 124402–124413, 2020.
[15] T. S. Rappaport, G. R. MacCartney, S. Sun, H. Yan, and S. Deng, ”Smallscale, local area, and transitional millimeter wave propagation for 5G communications”, IEEE Trans. Antennas Propag. 65(12), 6474–6490, 2017.
[16] J. Gante, G. Falciao, and L. Sousa, ”Data-aided fast beamforming selection for 5G”, in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), pp. 1183–1187, Apr. 2018.
[17] V. Va, J. Choi, T. Shimizu, G. Bansal, and R. W. Heath, Jr., ”Inverse multipath fingerprinting for millimeter wave V2I beam alignment”, IEEE Trans. Veh. Technol. 67(5), 4042–4058, 2018.
[18] V. Va, T. Shimizu, G. Bansal, and R. W. Heath, ”Online learning for position-aided millimeter wave beam training”, IEEE Access 7, 30507– 30526, 2019.
[19] A. Klautau, N. Gonz´alez-Prelcic, and R. W. Heath, ”LIDAR data for deep learning-based mmWave beam-selection”, IEEE Wireless Commun. Lett., 8(3), 909–912, 2019.
[20] A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu, and D. Tujkovic, ”Deep learning coordinated beamforming for highly-mobile millimeter wave systems”, IEEE Access 6, 37328–37348, 2018.
[21] C. Anton-Haro and X. Mestre, ”Learning and data-driven beam selection for mmWave communications: An angle of arrival-based approach”, IEEE Access 7, 20404–20415, 2019.
[22] M. S. Sim, Y. Lim, S. H. Park, L. Dai and C. Chae, ”Deep Learning- Based mmWave Beam Selection for 5G NR/6G With Sub-6 GHz Channel Information: Algorithms and Prototype Validation”, IEEE Access 8, 51634–51646, 2020.
[23] [24] K. He, X. Zhang, S. Ren, J. Sun, ”Deep residual learning for image recognition” In: CVPR., 2016.
[25] S. De and S. Smith, ”Batch normalization biases residual blocks towards the identity function in deep networks”, Advances in Neural Information Processing Systems 33, 2020.
[26] L. N. Smith, ”A disciplined approach to neural network hyperparameters: Part 1 – learning rate, batch size, momentum, and weight decay”, arXiv:1803.09820 [cs.LG], 2018.
[27] A. Klautau, N. Gonz´alez-Prelcic and R. W. Heath, ”LIDAR Data for Deep Learning-Based mmWave Beam-Selection”, IEEE Wireless Communications Letters, 8(3), 909–912, 2019.






DOI: 10.24425/ijet.2021.137864