Prediction of Fracture Stress with Regard to Porosity in Cast A356 Alloy

Journal title

Archives of Foundry Engineering




vo. 21


No 4


Sahin, H. : Istanbul Technical University, Turkey ; Atik, M. : Istanbul Technical University, Turkey ; Tezer, F. : Istanbul Technical University, Turkey ; Temel, S. : Istanbul Technical University, Turkey ; Aydin, O. : Istanbul Technical University, Turkey ; Kesen, O. : Istanbul Technical University, Turkey ; Gursoy, O. : University of Padova, Italy ; Dispinar, D. : Foseco, Netherlands



Casting defects ; Mechanical properties ; A356 ; Bifilm ; porosity ; Fracture stress

Divisions of PAS

Nauki Techniczne




The Katowice Branch of the Polish Academy of Sciences


[1] Buffiere, J.-Y., Savelli, S., Jouneau, P.-H., Maire, E. & Fougeres, R. (2001). Experimental study of porosity and its relation to fatigue mechanisms of model Al–Si7–Mg0. 3 cast Al alloys. Materials Science and Engineering: A. 316(1-2), 115-126. DOI: 10.1016/S0921-5093(01)01225-4.
[2] Dispinar, D. & Campbell, J. (2011). Porosity, hydrogen and bifilm content in Al alloy castings. Materials Science and Engineering: A. 528(10-11), 3860-3865. DOI: 10.1016/j.msea.2011.01.084.
[3] Dispinar, D. & Campbell, J. (2004). Critical assessment of reduced pressure test. Part 1: Porosity phenomena. International Journal of Cast Metals Research. 17, 280-286. DOI: 10.1179/136404604225020696.
[4] Dispinar, D. & Campbell, J. (2004). Critical assessment of reduced pressure test. Part 2: Quantification. International Journal of Cast Metals Research. 17, 287-294. DOI: 10.1179/136404604225020704.
[5] Dispinar, D. & Campbell, J. (2006). Use of bifilm index as an assessment of liquid metal quality. International Journal of Cast Metals Research. 19, 5-17. DOI: 10.1179/136404606225023300.
[6] Dispinar, D. & Campbell, J. (2007). Effect of casting conditions on aluminium metal quality. Journal of Materials Processing Technology. 182, 405-410. DOI: 10.1016/j.jmatprotec.2006.08.021.
[7] Campbell, J. (2015). Complete casting handbook: metal casting processes, metallurgy, techniques and design. Butterworth-Heinemann.
[8] Dispinar, D. & Campbell, J. (2014). Reduced pressure test (RPT) for bifilm assessment. in Shape Casting: 5th International Symposium 2014, 243-251.
[9] Asadian Nozari, M., Taghiabadi, R., Karimzadeh, M. & Ghoncheh, M. H. (2015). Investigation on beneficial effects of beryllium on entrained oxide films, mechanical properties and casting reliability of Fe-rich Al–Si cast alloy. Materials Science and Technology. 31, 506-512. DOI: 10.1179/1743284714Y.0000000656.
[10] Bagherpour-Torghabeh, H., Raiszadeh, R. & Doostmohammadi, H. (2017). Role of Mechanical Stirring of Al-Mg Melt in the Healing of Bifilm Defect. Metallurigical and Materials Transactions B. 48, 3174-3184. DOI: 10.1007/s11663-017-1067-9.
[11] Bjurenstedt, A., Seifeddine, S. & Jarfors, A. E. W. (2015). On the complexity of the relationship between microstructure and tensile properties in cast aluminum. International Journal of Modern Physics B. 29, 1540011. DOI: 10.1142/S0217979215400111.
[12] Bozchaloei, G. E., Varahram, N., Davami, P. & Kim, S. K. (2012). Effect of oxide bifilms on the mechanical properties of cast Al–7Si–0.3 Mg alloy and the roll of runner height after filter on their formation. Materials Science and Engineering A. 548, 99-105. DOI: 10.1016/j.msea.2012.03.097.
[13] Çolak, M., Kayikci, R. & Dispinar, D. (2016). Melt cleanliness comparison of chlorine fluxing and ar degassing of secondary Al-4Cu. Metallurgical and Materials Transactions B. 47, 2705-2709. DOI: 10.1007/s11663-016-0745-3.
[14] Davami, P., Kim, S. K. & Varahram, N. (2012). Effects of hydrogen and oxides on tensile properties of Al–Si–Mg cast alloys. Materials Science and Engineering A. 552, 36-47. DOI: 10.1016/j.msea.2012.04.111.
[15] Davami, P., Kim, S. K. & Tiryakioğlu, M. (2013). The effect of melt quality and filtering on the Weibull distributions of tensile properties in Al–7% Si–Mg alloy castings. Materials Science and Engineering A. 579, 64-70. DOI: 10.1016/j.msea.2013.05.014.
[16] Dispinar, D., Akhtar, S., Nordmark, A., Di Sabatino, M. & Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356. Materials Science and Engineering A. 527, 3719-3725. DOI: 10.1016/j.msea.2010.01.088.
[17] El-Sayed, M. A., Hassanin, H. & Essa, K. (2016). Bifilm defects and porosity in Al cast alloys. The International Journal of Advanced Manufacturing Technology. 86, 1173-1179. DOI: 10.1007/s00170-015-8240-6.
[18] El-Sayed, M. A., Hassanin, H. & Essa, K. (2016). Effect of casting practice on the reliability of Al cast alloys. International Journal of Cast Metals Research. 29, 350-354. DOI: 10.1080/13640461.2016.1145966.
[19] El-Sayed, M. A., Salem, H. A. G., Kandeil, A. Y. & Griffiths, W. D. (2014). Determination of the lifetime of a double-oxide film in al castings. Metallurgical and Materials Transactions B. 45, 1398-1406. DOI: 10.1007/s11663-014-0035-x.
[20] Erzi, E., Gürsoy, Ö., Yüksel, Ç., Colak, M. & Dispinar, D. (2019). Determination of acceptable quality limit for casting of A356 aluminium alloy: supplier’s quality index (SQI). Metals. 9, 957. DOI: 10.3390/met9090957.
[21] Fiorese, E., Bonollo, F., Timelli, G., Arnberg, L. & Gariboldi, E. (2015). New classification of defects and imperfections for aluminum alloy castings. International Journal of Metalcasting. 9, 55-66. DOI: 10.1007/BF03355602.
[22] Gopalan, R. & Prabhu, N. K. (2011). Oxide bifilms in aluminium alloy castings–a review. Materials Science and Technology. 27, 1757-1769. DOI: 10.1179/1743284711Y.0000000033.
[23] Hsu, F.-Y., Jolly, M. R. & Campbell, J. (2007). The design of L-shaped runners for gravity casting. in Metals & Materials Society The Minerals, Proceedings of Shape Casting: 2nd International Symposium, Orlando, FL, USA.
[24] Kang, M. et al. (2014). Tensile properties and microstructures of investment complex shaped casting. Materials Science and Technology. 30, 1349-1353. DOI: 10.1179/1743284713Y.0000000444.
[25] Mostafaei, M., Ghobadi, M., Eisaabadi, G., Uludağ, M. & Tiryakioğlu, M. (2016). Evaluation of the effects of rotary degassing process variables on the quality of A357 aluminum alloy castings. Metallurgical and Materials Transactions B. 47, 3469-3475. DOI: 10.1007/s11663-016-0786-7.
[26] Puga, H., Barbosa, J., Azevedo, T., Ribeiro, S. & Alves, J. L. (2016). Low pressure sand casting of ultrasonically degassed AlSi7Mg0.3 alloy: modelling and experimental validation of mould filling. Materials and Design. 94, 384-391. DOI: 10.1016/j.matdes.2016.01.059.
[27] Stefanescu, D. M. (2005). Computer simulation of shrinkage related defects in metal castings–a review. International Journal of Cast Metals Research. 18, 129-143. DOI: 10.1179/136404605225023018.
[28] Tiryakioğlu, M., Campbell, J. & Nyahumwa, C. (2011). Fracture surface facets and fatigue life potential of castings. Metallurgical and Materials Transactions B. 42, 1098-1103. DOI: 10.1007/s11663-011-9577-3.
[29] Tunçay, T. & Bayoğlu, S. (2017). The effect of iron content on microstructure and mechanical properties of A356 cast alloy. Metallurgical and Materials Transactions B. 48, 794-804. DOI: 10.1007/s11663-016-0909-1.
[30] Tunçay, T., Tekeli, S., Özyürek, D. & Dispinar, D. (2017). Microstructure–bifilm interaction and its relation with mechanical properties in A356. International Journal of Cast Metals Research. 30, 20-29. DOI: 10.1080/13640461.2016.1192826.
[31] Uludağ, M., Çetin, R., Dispinar, D. & Tiryakioğlu, M. (2017). Characterization of the Effect of Melt Treatments on Melt Quality in Al-7wt %Si-Mg Alloys. Metals. 7(5), 157. DOI: 10.3390/met7050157.
[32] Uludağ, M., Çetin, R., Dişpinar, D. & Tiryakioğlu, M. (2018). On the interpretation of melt quality assessment of A356 aluminum alloy by the reduced pressure test: the bifilm index and its physical meaning. International Journal of Metalcasting. 12, 853–860. DOI: 10.1007/s40962-018-0217-4.
[33] Yorulmaz, A., Erzi, E., Gursoy, O. & Dispinar, D. (2019). End product rejection rate and its correlation with melt treatment in direct-chill casted hot rolling slabs. International Journal of Cast Metals Research. 32, 164-170. DOI: 10.1080/13640461.2019.1598684.
[34] Zahedi, H. et al. (2007). The effect of Fe-rich intermetallics on the Weibull distribution of tensile properties in a cast Al-5 pct Si-3 pct Cu-1 pct Fe-0.3 pct Mg alloy. Metallurgical and Materials Transactions A. 38, 659-670. DOI: 10.1007/s11661-006-9068-3.
[35] Kuwazuru, O. et al. (2008). X-ray CT inspection for porosities and its effect on fatigue of die cast aluminium alloy. Journal of Solid Mechanics and Materials Engineering. 2(9), 1220-1231. DOI: 10.1299/jmmp.2.1220.
[36] Le, V.-D., Saintier, N., Morel, F., Bellett, D. & Osmond, P. (2018). Investigation of the effect of porosity on the high cycle fatigue behaviour of cast Al-Si alloy by X-ray micro-tomography. International Journal of Fatigue. 106, 24-37. DOI: 10.1016/j.ijfatigue.2017.09.012.
[37] Wang, L. et al. (2016). Influence of pores on crack initiation in monotonic tensile and cyclic loadings in lost foam casting A319 alloy by using 3D in-situ analysis. Materials Science and Engineering A. 673, 362-372. DOI: 10.1016/j.msea.2016.07.036.
[38] Vincent, M., Nadot-Martin, C., Nadot, Y. & Dragon, A. (2014). Fatigue from defect under multiaxial loading: efect Stress Gradient (DSG) approach using ellipsoidal Equivalent Inclusion Method. International Journal of Fatigue. 59, 176-187. DOI: 10.1016/j.ijfatigue.2013.08.027.
[39] Gyarmati, G., Fegyverneki, G., Mende, T. & Tokár, M. (2019). Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Materials Characterization. 157, 109925. DOI: 10.1016/j.matchar.2019.109925.
[40] Kobayashi, M., Dorce, Y., Toda, H. & Horikawa, H. (2010). Effect of local volume fraction of microporosity on tensile properties in Al–Si–Mg cast alloy. Materials Science and Technology. 26, 962-967. DOI: 10.1179/174328409X 441283.
[41] Nikishkov, G. P. (2004). Introduction to the finite element method. Univ. Aizu 1-70.






DOI: 10.24425/afe.2021.138675