Experimental and numerical investigation of axial and tangential forces in a stirred tank with yield-stress fluids

Journal title

Chemical and Process Engineering




vol. 42


No 2


Story, Anna : West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42,71-065 Szczecin, Poland ; Story, Grzegorz : West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42,71-065 Szczecin, Poland ; Jaworski, Zdzisław : West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42,71-065 Szczecin, Poland



mixing ; yield-stress fluid ; axial force ; tangential force ; CFD

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences Committee of Chemical and Process Engineering


Adams L. W., Barigou M., 2007. CFD analysis of caverns and pseudo-caverns developed during mixing of non- Newtonian fluids. Chem. Eng. Res. Des., 85, 598–604. DOI: 10.1205/cherd06170.

Amanullah A., Hjorth S.A., Nienow A.W., 1997. Cavern sizes generated in highly shear thinning viscous fluids by SCABA 3SHP1 impellers. Food Bioprod. Process., 75, 232–238. DOI: 10.1205/096030897531630.

Amanullah A., Hjorth S.A., Nienow A.W., 1998. A new mathematical model to predict cavern diameters in highly shear thinning, power law liquids using axial flow impellers. Chem. Eng. Sci., 53, 455–469. DOI: 10.1016/S0009-2509(97)00200-5.

Ameur H., 2016. Agitation of yield stress fluids in different vessel shapes. Eng. Sci. Technol., 19, 189–196. DOI: 10.1016/j.jestch.2015.06.007.

Ameur H., 2017. Mixing of a viscoplastic fluid in cylindrical vessels equipped with paddle impellers. Chemistry Select, 2, 11492–11496. DOI: 10.1002/slct.201702459.

Ameur H., 2019. Some modifications in the Scaba 6SRGT impeller to enhance the mixing characteristics of Hershel-Bulkley fluids. Food Bioprod. Process., 117, 302–309. DOI: 10.1016/j.fbp.2019.08.007.

Ameur H., Bouzit M., Helmaoui M., 2011. Numerical study of fluid flow and power consumption in a stirred vessel with a Scaba 6SRGT impeller. Chem. Process Eng., 32, 351–366. DOI: 10.2478/v10176-011-0028-0.

Arratia P.E., Kukura J., Lacombe J., Muzzio F.J., 2006. Mixing of shear-thinning fluids with yield stress in stirred tanks. AIChE J., 52, 2310–2322. DOI: 10.1002/aic.10847.

Bakker C.W., Meyer C.J., Deglon D.A., 2009. Numerical modelling of non-Newtonian slurry in a mechanical flotation cell. Miner. Eng., 22, 944–950. DOI: 10.1016/j.mineng.2009.03.016.

Bakker C.W., Meyer C.J., Deglon D.A., 2010. The development of a cavern model for mechanical flotation cells. Miner. Eng., 23, 968–972. DOI: 10.1016/j.mineng.2010.03.016.

Bhole M.R., Bennington C.P.J., 2010. Performance of four axial flow impellers for agitation of pulp suspensions in a laboratory-scale cylindrical stock chest. Ind. Eng. Chem. Res., 49, 4444-4451. DOI: 10.1021/ie901854d.

Bhole M.R., Hui L.K., Gomez C., Bennington C.P.J., Dumont G.A., 2011. The effect of off-wall clearance of a side-entering impeller on the mixing of pulp suspensions in a cylindrical stock chest. Can. J. Chem. Eng., 89, 985–995. DOI: 10.1002/cjce.20503.

Bonn D., Denn M.M., Berthier L., Divoux T., Manneville S., 2017. Yield stress materials in soft condensed matter. Rev. Mod. Phys., 89, 035005, 1–40. DOI: 10.1103/RevModPhys.89.035005.

del Pozo D.F., Line A., Van Geem K.M., Le Men C., Nopens I., 2020. Hydrodynamic analysis of an axial impeller in a non-Newtonian fluid through particle image velocimetry. AIChE J., 66, e16939, 1–16. DOI: 10.1002/aic.16939.

Dylak A., Jaworski Z., 2015. A CFD study of formation of the intensive mixing zone in a highly non-Newtonian fluid. AIP Conference Proceedings, 1648, 030013. DOI: 10.1063/1.4912330.

Ford C., Ein-Mozaffari F., Bennington C.P.J., Taghipour F., 2006. Simulation of mixing dynamics in agitated pulp stock chests using CFD. AIChE J., 52, 3562–3569. DOI: 10.1002/aic.10958.

Fort I., Seichter P., Pešl L., 2013. Axial thrust of axial flow impellers. Chem. Eng. Res. Des., 91, 789–794. DOI: 10.1016/j.cherd.2012.10.001.

Frigaard I. A., Nouar C., 2005. On the usage of viscosity regularisation methods for visco-plastic fluid flow computation. J. Non-Newtonian Fluid Mech., 127, 1-26. DOI: 10.1016/j.jnnfm.2005.01.003.

Galindo E., Arguello M., Velasco D.A., Albiter V., Martinez A., 1996. A comparison of cavern development in mixing a yield stress fluid by Rushton and intermig impellers. Chem. Eng. Technol., 19, 315–323. DOI: 10.1002/ceat.270190405.

Galindo E., NienowA.W., 1992. Mixing of highly viscous simulated Xanthan fermentation broths with the Lightinin A-315-impeller. Biotechnol. Prog., 8, 233–239. DOI: 10.1021/bp00015a009.

Herschel W. H., Bulkley R., 1926. Consistency measurements of rubber-benzol solutions. Kolloid-Zeitschrift, 39, 291–300. DOI: 10.1007/BF01432034.

Hui L.K., Bennington C.P.J., Dumont G.A., 2009. Cavern formation in pulp suspensions using side-entering axial-flow impellers. Chem. Eng. Sci., 64, 509–519. DOI: 10.1016/j.ces.2008.09.021.

Jaworski Z., Nienow A.W., 1994. LDA measurements of flow fields with hydrofoil impellers in fluids with different rheological properties. Eighth European Conference on Mixing, IChemE Symp. Series, 136, 105–112.

Jaworski Z., Spychaj T., Story A., Story G., 2021. Carbomer microgels as model yield-stress fluids. Rev. Chem. Eng., 000010151520200016. DOI: 10.1515/revce-2020-0016.

Kelly W., Gigas B., 2003. Using CFD to predict the behavior of power law fluids near axial-flow impellers operating in the transitional flow regime. Chem. Eng. Sci., 58, 2141–2152. DOI: 10.1016/S0009-2509(03)00060-5.

Nienow A.W., Elson T.P., 1988. Aspects of mixing in rheologically complex fluids. Chem. Eng. Res. Des., 66, 5–15.

Rodriguez B.E., Wolfe M.S., Fryd M., 1994. Nonuniform swelling of alkali swellable microgels. Macromolecules, 27, 6642–6647. DOI: 10.1021/ma00100a058.

Russell A.W., Kahouadji L., Mirpuri K., Quarmby A., Piccione P.M., Matar O.K., Luckham P.F., Markides C.N., 2019. Mixing viscoplastic fluids in stirred vessels over multiple scales: A combined experimental and CFD approach. Chem. Eng. Sci., 208, 115129. DOI: 10.1016/j.ces.2019.07.047.

Savreux F., Jay P., Magnin A., 2007. Viscoplastic fluid mixing in a rotating tank. Chem. Eng. Sci., 62, 2290–2301. DOI: 10.1016/j.ces.2007.01.020.

Simmons M.J.H., Edwards I., Hall J.F., Fan X., Parker D.J., Stitt E.H., 2009. Techniques for visualization of cavern boundaries in opaque industrial mixing systems. AIChE J., 55, 2765–2772. DOI: 10.1002/aic.11889.

Sossa-Echeverria J., Taghipour F., 2014. Effect of mixer geometry and operating conditions on flow mixing of shear thinning fluids with yield stress. AIChE J., 60, 1156–1167. DOI: 10.1002/aic.14309.

Sossa-Echeverria J., Taghipour F., 2015. Computational simulation of mixing flow of shear thinning non-Newtonian fluids with various impellers in a stirred tank. Chem. Eng. Process., 93, 66–78. DOI: 10.1016/j.cep.2015.04.009.

Story A., Jaworski Z., 2017. A new model of cavern diameter based on a validated CFD study on stirring of a highly shear-thinning fluid. Chem. Pap., 71, 1255–1269. DOI: 10.1007/s11696-016-0119-y.

Story A., Jaworski Z., Major-Godlewska M., Story G., 2018. Influence of rheological properties of stirred liquids on the axial and tangential forces in a vessel with a PMT impeller. Chem. Eng. Res. Des., 138, 398–404. DOI: 10.1016/j.cherd.2018.09.006.

Story A., Story G., Jaworski Z., 2020. Effect of carbomer microgel pH and concentration on the Herschel–Bulkley parameters. Chem. Process Eng., 41, 173–182. DOI: 10.24425/cpe.2020.132540.

Stręk F., 1981. Mieszanie i mieszalniki. Wydawnictwa Naukowo-Techniczne, Warszawa.

Wichterle K., Wein O., 1975. Agitation of concentrated suspensions. CHISA ’75, Paper B.4.6. Prague, Czechoslovakia.

Wu J., Pullum L., 2000. Performance analysis of axial-flowmixing impellers. AIChE J., 46, 489–498. DOI: 10.1002/aic.690460307.

Xiao Q., Yang N., Zhu J. H., Guo L.J., 2014. Modeling of cavern formation in yield stress fluids in stirred tanks. AIChE J., 60, 3057–3070. DOI: 10.1002/aic.14470.






DOI: 10.24425/cpe.2021.138923

Editorial Board

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766