Prospects and efficiency measurement of artificial intelligence in the management of enterprises in the energy sector in the era of Industry 4.0

Journal title

Polityka Energetyczna - Energy Policy Journal




vol. 24


No 4


Doroshuk, Hanna : Department of Menegement, Odessa Polytechnic State University, Ukraine



artificial intelligence ; efficiency measurement ; risks of artificial intelligence ; Industry 4.0

Divisions of PAS

Nauki Techniczne




Instytut Gospodarki Surowcami Mineralnymi i Energią PAN


Armenakis et al. 1993 – Armenakis, A.A., Harris, S.G. and Mossholder, K.W. 1993. Creating Readiness for Organizational Change. Human Relations 46, pp. 681–703.
Artificial intelligence the next digital frontier? McKinsey Global Institute. July 2017. 80 p. [Online] artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/mgi-artificial-intelligence- discussion-paper.ashx [Accessed: 2021-07-15].
Bakke, D. 2005. Joy a work: A Revolutionary Approach to Fun on the Job. Seattle: PVG, 314 pp.
Behrens, W. and Hawranek, P.M. 1978. Manual for the preparation of industrial feasibility studies. NY: Unated Nations, 404 pp.
Berger, R. 2013. How to Survive in the VUCA World. Hamburg: Roland Berger, 245 pp.
Blommaert, Т. and Broek, S. 2017. Management in Singularity: From linear to exponential management. Vakmedianet; 1 edition, 172 pp.
Borowski, P.F. 2016. Development strategies for electric utilities. Acta Energetica 4, pp. 16–21.
Borowski, P. 2021. Innovative Processes in Managing an Enterprise from the Energy and Food Sector in the Era of Industry 4.0. Processes 9(2), 381, DOI: 10.3390/pr9020381.
Bostrom, N. 2014. Superintelligence: Paths, Dangers, Strategies. Oxford University Press, 352 pp.
Cheatham et al. 2019 – Cheatham, B., Javanmardian, K. and Samandari, H. 2019. Confronting the risks of artificial intelligence. [Online] [Accessed: 2021-07-15].
Doroshuk, H. 2019. Organizational development: theory, methodology, practice (Організаційний розвиток: теорія, методологія, практика). Odesa: Osvita Ukrainy, 368 pp. (in Ukrainian).
Doroshuk, H. 2020. Reform of the electricity sector in Ukraine – liberalization of the market and corporatization of companies. Polityka Energetyczna – Energy Policy Journal 23(4), pр. 105–122. [Online] and-corporatization,127664,0,2.html/ [Accessed: 2021-07-15].
Edvinsson, L. and Malone, M. 1997. Intellectual Capital: Realizing your Company’s True Value by Finding its Hidden Brainpower. New York, NY: Harper Collins.
Firer, S. and Williams, S.M. 2003. Intellectual capital and traditional measures of corporate performance. Journal of Intellectual Capital 4(3) , pp. 348–360, DOI: 10.1108/14691930310487806.
Hoe, S.L. 2019. The topicality of the learning organization: Is the concept still relevant today? [In:] The Oxford Handbook of the Learning Organization, Oxford University Press: Oxford, UK, pp. 18–32.
Jackson, P.C. Jr. 2019. Introduction to Artificial Intelligence. New York: Dover Publication Inc., 170 pp. Jensen, P.E. 2005. A contextual theory of learning and the learning organization. Knowledge Process Management 12, pp. 53–64, DOI: 10.1002/kpm.217.
Jones, M.T. 2017. A Beginner’s Guide to Artificial Intelligence, Machine Learning and Cognitive Computing. [Online] [Accessed: 2021-07-15].
Kinelski, G. 2020. The main factors of successful project management in the aspect of energy enterprises’ efficiency in the digital economy environment. Polityka Energetyczna – Energy Policy Journal 23(3), pр. 5–20, DOI: 10.33223/epj/126435.
Koistinen, P. 2021. Toward learning organization – Practices in nuclear power plants. [In:] Human Factors in the Nuclear Industry, Elsevier BV: Amsterdam, The Netherlands, pp. 239–247.
Laloux, Fr. 2014. Reinventing Organizations: A Guide to Creating Organizations Inspired by the Next Stage of Human Consciousness. Brussels: Nelson&Parker, 379 pp.
Levy, F. 2009. A simulated approach to valuing knowledge capital. Washington: The George Washington University, 189 pp.
Nazari, J.A. and Herremans, I.M. 2007. Extending VAIC model: measuring intellectual capital components. Journal of Intellectual Capital 8(4), DOI: 10.1108/14691930710830774.
Oklander et al. 2018 – Oklander, M., Oklander, T., Yashkina, O., Pedko, I. and Chaikovska, M. 2018. Analysis of technological innovations in digital marketing. Eastern-European Journal of Enterprise Technologies 5/3 (95), pp. 80–91, DOI: 10.1088/1755-1315/440/2/022026.
Pan et al. 2020 – Pan, T., Hu, T. and Geng, J. 2020. View learning organization in a situational perspective. IOP Conference Series: Earth and Environmental Science 440 pp.
Piano, S.L. 2020. Ethical principles in machine learning and artificial intelligence: Cases from the field and possible ways forward. Humanities and Social Science Communication 7, DOI: 10.1057/s41599-020-0501-9.
Romer, P.M. 1994. The Origins of Endogenous Growth. The Journal of Economic Perspectives 8(1), pp. 3–22.
Sozontov et al. 2019 – Sozontov, A., Ivanova, M. and Gibadullin, A. 2019. Implementation of artificial intelligence in the electric power industry. [In:] E3S Web of Conferences 114, DOI: 10.1051/e3sconf/201911401009. EDP Sciences.
Toffler, A. 1984. The Third Wave. NY: Bantam, 560 pp.
Tortorella et al. 2020 – Tortorella, G.L., Vergara, A.M.C., Garza-Reyes, J.A. and Sawhney, R. 2020. Organizational learning paths based upon Industry 4.0 adoption: An empirical study with Brazilian manufacturers. International Journal of Production Economics 219, pp. 284–294, DOI: 10.1016/j.ijpe.2019.06.023.
Von Ketelhod, Wöcke, A. 2008. The impact of electricity crises on the consumption behaviour of small and medium enterprises. Journal of Energy in Southern Africa 19(1), pp. 4–12