Estimation of reburning potential of syngas from sewage sludge gasification process

Journal title

Chemical and Process Engineering




No 4 December



gasification ; sewage sludge ; plug flow reactor

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences Committee of Chemical and Process Engineering




Artykuły / Articles


DOI: 10.2478/v10176-011-0033-3 ; ISSN 2300-1925 (Chemical and Process Engineering)


Chemical and Process Engineering; 2011; No 4 December; 411-421


Adams B. (1998), Reburning using biomass for NO<sub>x</sub>control, Fuel Process. Technol, 54, 249, ; Bilbao R. (1995), Experimental study and modeling of the burnout zone in the natural gas reburning process, Chem. Eng. Sci, 50, 2579, ; Cariln N. (2009), The economics of reburning with cattle manure-based biomass in existing coal-fired power plants for NO<sub>x</sub>and CO<sub>2</sub>emissions control, Biomass Bioenerg, 33, 1139, ; Dagaut P. (1998), Experimental and detailed kinetic modeling of nitric oxide reduction by a natural gas blend in simulated reburning conditions, Combust. Sci. and Technol, 139, 329, ; Dąbrowski J. (2011), Mathematical description of combustion process of selected groups of waste, Rocznik Ochr. Środ, 13, 253. ; Folsom B. (1991), Demonstration of combined NO<sub>x</sub>and SO<sub>2</sub>emission control technologies involving gas reburning, null. ; Folsom B. (1997), Advanced gas reburning demonstration and commercial gas reburning system upgrade, Fuel Energy Abstracts, 4, 227, ; Frassoldati A. (2007), The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds, Int. J Hydrogen Energy, 32, 3471, ; Galborg P. (1998), Kinetic modeling of hydrocarbon/nitric oxides interactions in a flow reactor, Combust. Flame, 115, 1, ; Glarborg P. (1992), A reduced mechanism for nitrogen chemistry in methane combustion, Proc. Combustion Inst, 24, 889. ; Hardy T. (2003), Efficiency of NO<sub>x</sub>reduction from pulverized boilers using reburning, Archiwum Spalania, 2-4, 33. ; Hewson J. (1992), Reduced mechanism for NO<sub>x</sub>emissions from hydrocarbon diffusion flames, Proc. Combustion Inst, 24, 2171. ; Klipinen P. (1992), Reburning chemistry: a kinetic modeling study, Ind. Eng. Chem. Res, 31, 1478, ; Lanigan E. (1991), International Gas Reburn Technology Workshop, 121. ; Maly P. (1999), Alternative fuel reburning, Fuel, 78, 327, ; Miller J. (1989), Mechanism and modeling of nitrogen chemistry in combustion, Prog. Energy Combust. Sci, 15, 287, ; Norman F. (2009), Emission control of nitrogen in the oxy-fuel process, Prog. Energy Combust. Sci, 35, 385, ; Piecuch T. (2009), A laboratory investigations on possibility of thermal utilization of post-production Waste polyester, Rocznik Ochr. Środ, 11, 87. ; Shen B. (2004), Kinetic model for natural gas reburning, Fuel Process. Technol, 85, 1301, ; Smith G.P., Golden D.P., Frenklach M., Moriarty N.W., Eiteneer B., Goldenberg M., Bowman C.T., Hanson R.K., Song S., Gardiner W.C., Lissianski Jr. V.V., Qin Z., Gri-Mech 2.11 <a target="_blank" href=''></a> ; Smoot L. (1998), International research centers' activities in coal combustion, Prog. Energy Combust. Sci, 24, 409, ; Smoot L. (1998), NO<sub>x</sub>control through reburning, Prog. Energy Combust. Sci, 24, 385, ; Szkarowski A. (2001), Technology of NO<sub>x</sub>emission reduction using method of flame dosed direction ballasting, Rocznik Ochr. Środ, 3, 54. ; Szkarowski A. (2002), Principles of calculation at suppression of NO<sub>x</sub>formation by a method of the dosed directed injection of a water ballast, Rocznik Ochr. Środ, 4, 366. ; Takahashi Y. (1983), null. ; Wendt J. (1972), Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection, null, 881. ; Werle S. (2012), A reburnig process using sewage sludge-derived syngas, Chem. Pap, 2, 99, ; Werle S. (2011), Modeling of the reburnig process using sewage sludge-derived syngas, Waste Manage, ; Werle S. (2010), A review of methods for the thermal utilization of sewage sludge: The Polish perspective, Renew. Energy, 35, 1914,

Editorial Board

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766