Science and earth science

Polish Polar Research

Content

Polish Polar Research | 2010 | No 3 |

Download PDF Download RIS Download Bibtex

Abstract

Meteorological and biometeorological conditions during the warm seasons (June– September) of 1979–2008 are described for the Hornsund area, Spitsbergen. The measure− ments were taken at four sites: at Hornsund, at the Hans Glacier (at its equilibrium line and in the firn section) and at the summit of Fugleberget. The variation of meteorological and biometeorological conditions was analysed in relation to altitude, distance from the sea and the ground type. In warm seasons, the air temperature at Hornsund was 2.2°C higher on aver− age than at the Hans Glacier (central section) and by 2.8°C than at the Hans Glacier (firn sec− tion) and at Fugleberget. The average wind speed recorded at Hornsund was higher (0.6ms−1) than at the Hans Glacier and lower (0.9ms−1) than at Fugleberget. Four biometeorological in− dices were used: wind chill index (WCI), predicted insulation of clothing (Iclp), cooling power (H) and subjective temperature index (STI). The strongest thermal stimuli were ob− served on the Hans Glacier and in the upper mountain areas. The study has found a consider− able degree of spatial variation between the meteorological elements investigated and the biometeorological indices in the Hornsund area. The impact of atmospheric circulation on meteorological elements and biometeorological indices is also presented. The mildest bio− meteorological conditions of the warm season found at Hornsund were associated with air masses arriving from the southwest and west.

Go to article

Authors and Affiliations

Andrzej Araźny
Krzysztof Migała
Sebastian Sikora
Tomasz Budzik
Download PDF Download RIS Download Bibtex

Abstract

51 samples from the Middle Triassic black shales (organic carbon−rich silt− stones; up to 4.9% TOC – Total Organic Carbon) from the stratotype section of the Bravaisberget Formation (western Spitsbergen) were analyzed with respect to isotopic composition of pyritic sulphur (34S) and TOC. Isotopic composition of syngenetic py− rite−bound sulphur shows wide (34S from −26‰ to +8‰ VCDT) and narrow (34S from −4‰ to +17‰ VCDT) variation of the 34S in upper and lower part of the section, respec− tively. Range of the variation is associated with abrupt changes in dominant lithology. Wide 34S variation is found in lithological intervals characterized by alternation of black shales and phosphorite−bearing sandstones. The narrow 34S variation is associated with the lithological interval dominated by black shales only. Wide and narrow variation of the 34S values suggests interplay of various factors in sedimentary environment. These fac− tors include oxygen concentration, clastic sedimentation rate, bottom currents and bur− rowing activity. Biological productivity and rate of dissimilatory sulphate reduction had important impact on the 34S variation as well. Wide variation of the 34S values in the studied section resulted from high biological productivity and high rate of dissimilatory sulphate reduction. Variable degree of clastic sedimentation rate and burrowing activity as well as the activity of poorly oxygenated bottom currents could also cause a co−occurrence of isotopically light and heavy pyrite in differentiated diagenetic micro−environments. Occurrence of organic matter depleted in hydrogen could also result in a wide variation of the 34S values. Narrow variation of the 34S values was due to a decrease of biological productivity and low rate of dissimilatory sulphate reduction. Low organic matter supply, low oxygen concentration and bottom currents and burrowing activity were also responsible for narrow variation of the 34S. The narrow range of the 34S variation was also due to occurrence of hydrogen−rich organic matter. In the studied section the major change in range of the 34S variation from wide to narrow appears to be abrupt and clearly associated with change in lithology. The change of lithology and isotopic valuesmay sug− gest evolution of the sedimentary environment from high− to low−energy and also facies succession from shallow to deeper shelf. The evolution should be linked with the Late Anisian regional transgressive pulse in the Boreal Ocean.

Go to article

Authors and Affiliations

Przemysław Karcz
Download PDF Download RIS Download Bibtex

Abstract

Pyrite framboids occur in loose blocks of plant−bearing clastic rocks related to volcano−sedimentary succession of the Mount Wawel Formation (Eocene) in the Dragon and Wanda glaciers area at Admiralty Bay, King George Island, West Antarctica. They were investigated by means of optical and scanning electron microscopy, energy−dispersive spectroscopy, X−ray diffraction, and isotopic analysis of pyritic sulphur. The results suggest that the pyrite formed as a result of production of hydrogen sulphide by sulphate reducing bacteria in near surface sedimentary environments. Strongly negative 34SVCDT values of pyrite (−30 – −25 ‰) support its bacterial origin. Perfect shapes of framboids resulted from their growth in the open pore space of clastic sediments. The abundance of framboids at cer− tain sedimentary levels and the lack or negligible content of euhedral pyrite suggest pulses of high supersaturation with respect to iron monosulphides. The dominance of framboids of small sizes (8–16 μm) and their homogeneous distribution at these levels point to recurrent development of a laterally continuous anoxic sulphidic zone below the sediment surface. Sedimentary environments of the Mount Wawel Formation developed on islands of the young magmatic arc in the northern Antarctic Peninsula region. They embraced stagnant and flowing water masses and swamps located in valleys, depressions, and coastal areas that were covered by dense vegetation. Extensive deposition and diagenesis of plant detritus in these environments promoted anoxic conditions in the sediments, and a supply of marine and/or volcanogenic sulphate enabled its bacterial reduction, precipitation of iron mono− sulphides, and their transformation to pyrite framboids.

Go to article

Authors and Affiliations

Anna Mozer
Download PDF Download RIS Download Bibtex

Abstract

Many Antarctic marine benthic invertebrates are adapted to specific environ− mental conditions (e.g. low stable temperatures, high salinity and oxygen content). Changes caused by global climatic shifts can be expected to have significant impact on their physiol− ogy and distribution. Odontaster validus, an ubiquitous, omnivorous sea star is one of the “keystone species” in the Antarctic benthic communities. Laboratory experiments were car− ried out to study the effect of temperature rise (from 0 to 5C) on some vital biological func− tions that sea stars must perform in order to survive in their environment. Parameters such as behavioural reaction of sea stars to food and food odour, locomotory performance and abil− ity to right were measured. Temperature increase significantly impaired the ability of O. validus to perform these functions (e.g. lowering the number of sea stars able to right, in− creasing time−to−right, reducing locomotory activity, weakening chemosensory reaction to food and food odour). At temperatures of 4 and 5C a loss of motor coordination was ob− served, although at all tested temperatures up to 5C there were single individuals perform− ing successfully.
Go to article

Authors and Affiliations

Tomasz Janecki
Anna Kidawa
Marta Potocka

Instructions for authors



The quarterly Polish Polar Research invites original scientific papers dealing with all aspects of polar research. The journal aims to provide a forum for publication of high-quality research papers, which are of international interest.


We warmly welcome review papers and proposals for thematic Special Issues .


Articles must be written in English. Authors are requested to have their manuscript read by a person fluent in English before submission. They should not be longer than 30 typescript pages, including tables, figures and references. However, upon request, longer manuscripts may be considered for publication. All papers are peer-reviewed. With a submitted manuscript, authors should provide their names, affiliations, ORCID number and e-mail addresses of at least three suggested reviewers.

Submission of the manuscript should be supported with a declaration that the work described has not been published previously nor is under consideration by another journal.


For text submission, Word file format is preferred. The text should be prepared in single-column double-spaced format and 25 mm margins. Consult the current issue of the journal for layout and conventions. Figures and tables should be prepared as separate files. Line art images should be scanned and saved as bitmap (black and white) images at a resolution of 600–1200 dpi and tightly cropped. Computer versions of the photographs should be saved in TIFF format of at least 400 dpi (non-interpolated). Maximal publication size of illustrations is 126×196 mm. Authors must make sure that graphics are clearly readable at this size. ‘Hairline’ line width must not be used. All chart axes need to be labeled in full. For labeling sub-graphics in a single figure, capital letters placed in the upper left corner are preferred. Bold letters should not be used in tables (including headers), except to highlight a significant value/information.


A limited number of color reproductions in print is free of charge. Color artwork in PDF is free of charge.


Title should be concise, informative and no longer than 15 words. Abstract should have no more than 250 words. The authors are requested to supply up to 5 keywords, different than words used in the title. The references should be arranged alphabetically and chronologically. Journal names should not be abbreviated. Please, ensure that every reference cited in the text is also present in the reference list and vice versa. Responsibility for the accuracy of bibliographic citations lies entirely with the authors. The inline references to published papers should consist of the surname of the author(s) followed by the year of publication. More than two authors should be cited with the first author’s surname, followed by et al. (Dingle et al. 1998) but in full in the References.


For formatting Reference list, please
Download file or see journal’s latest issues.



The journal does not have article processing charges (APCs) nor article submission charges. No honorarium will be paid to authors for publishing papers.
Please submit your manuscripts to Polish Polar Research using our online submission system.





This page uses 'cookies'. Learn more